Search Results

Now showing 1 - 10 of 14
  • Item
    Graphene Q-switched Yb:KYW planar waveguide laser
    (New York, NY : American Inst. of Physics, 2015) Kim, Jun Wan; Young Choi, Sun; Aravazhi, Shanmugam; Pollnau, Markus; Griebner, Uwe; Petrov, Valentin; Bae, Sukang; Jun Ahn, Kwang; Yeom, Dong-Il; Rotermund, Fabian
    A diode-pumped Yb:KYW planar waveguide laser, single-mode Q-switched by evanescent-field interaction with graphene, is demonstrated for the first time. Few-layer graphene grown by chemical vapor deposition is transferred onto the top of a guiding layer, which initiates stable Q-switched operation in a 2.4-cm-long waveguide laser operating near 1027 nm. Average output powers up to 34 mW and pulse durations as short as 349 ns are achieved. The measured output beam profile, clearly exhibiting a single mode, agrees well with the theoretically calculated mode intensity distribution inside the waveguide. As the pump power is increased, the repetition rate and pulse energy increase from 191 to 607 kHz and from 7.4 to 58.6 nJ, respectively, whereas the pulse duration decreases from 2.09 μs to 349 ns.
  • Item
    Properties of LiGa0.5In0.5Se2: A Quaternary Chalcogenide Crystal for Nonlinear Optical Applications in the Mid-IR
    (Basel : MDPI, 2016) Isaenko, Ludmila; Yelisseyev, Alexander; Lobanov, Sergei; Vedenyapin, Vitaliy; Krinitsyn, Pavel; Petrov, Valentin
    LiGaSe2 (LGSe) and LiInSe2 (LISe) are wide band-gap nonlinear crystals transparent in the mid-IR spectral range. LiGa0.5In0.5Se2 (LGISe) is a new mixed crystal, a solid solution in the system LGSe–LISe, which exhibits the same orthorhombic structure (mm2) as the parent compounds in the same time being more technological with regard to the growth process. In comparison with LGSe and LISe its homogeneity range is broader in the phase diagram. About 10% of the Li ions in LGISe occupy octahedral positions (octapores) with coordination number of 3. The band-gap of LGISe is estimated to be 2.94 eV at room temperature and 3.04 eV at 80 K. The transparency at the 0-level extends from 0.47 to 13 µm. LGISe crystals exhibit luminescence in broad bands centered near 1.7 and 1.25 eV which is excited most effectively by band-to-band transition. From the measured principal refractive indices and the fitted Sellmeier equations second-harmonic generation from 1.75 to 11.8 μm (fundamental wavelength) is predicted. The nonlinear coefficients of LGISe have values between those of LGSe and LISe. 6LGISe crystals are considered promising also for detection of thermal neutrons.
  • Item
    Graphene mode-locked Tm,Ho-codoped crystalline garnet laser producing 70-fs pulses near 21 µm
    (Washington, DC : OSA, 2019) Zhao, Yongguang; Chen, Weidong; Wang, Li; Wang, Yicheng; Pan, Zhongben; Dai, Xiaojun; Yuan, Hualei; Cai, Huaqiang; Zhang, Yan; Bae, Ji Eun; Park, Tae Gwan; Rotermund, Fabian; Loiko, Pavel; Serres, Josep Maria; Mateos, Xavier; Shen, Deyuan; Griebner, Uwe; Petrov, Valentin
    Bilayer graphene synthesized by chemical vapor deposition is successfully applied as a saturable absorber (SA) for the passive mode-locking of a Tm,Ho:CLNGG laser at 2093nm. Near transform-limited pulses as short as 70 fs, i.e., 10 optical cycles, are produced at a 89 MHz repetition rate with 69 mW average output power. To the best of our knowledge, these are the shortest pulses ever reported from graphene-SA mode-locked Tm, or Ho-lasers in the 2 µm spectral region, including bulk and fiber lasers.
  • Item
    43 W, 1.55 μm and 12.5 W, 3.1 μm dual-beam, sub-10 cycle, 100 kHz optical parametric chirped pulse amplifier
    (Washington, DC : Soc., 2018) Mero, Mark; Heiner, Zsuzsanna; Petrov, Valentin; Rottke, Horst; Branchi, Federico; Thomas, Gabrielle M.; Vrakking, Marc J. J.
    We present a 100 kHz optical parametric chirped pulse amplifier (OPCPA) developed for strong-field attosecond physics and soft-x-ray transient absorption experiments. The system relies on noncollinear potassium titanyl arsenate booster OPCPAs and is pumped by a 244 W, 1.1 ps Yb:YAG Innoslab chirped pulse laser amplifier. Two optically synchronized infrared output beams are simultaneously available: a 430 μJ, 51 fs, carrier-envelope phase stable beam at 1.55 μm and an angular-dispersion-compensated, 125 μJ, 73 fs beam at 3.1 μm.
  • Item
    Sub-100 fs mode-locked Tm:CLTGG laser
    (Washington, DC : Soc., 2021) Wang, Li; Chen, Weidong; Pan, Zhongben; Loiko, Pavel; Bae, Ji Eun; Rotermund, Fabian; Mateos, Xavier; Griebner, Uwe; Petrov, Valentin
    We report on the first sub-100 fs mode-locked laser operation of a Tm3+-doped disordered calcium lithium tantalum gallium garnet (Tm:CLTGG) crystal. Soliton mode-locking was initiated and stabilized by a transmission-type single-walled carbon nanotube saturable absorber. Pulses as short as 69 fs were achieved at a central wavelength of 2010.4 nm with an average power of 28 mW at a pulse repetition rate of ∼87.7 MHz. In the sub-100 fs regime, the maximum average output power amounted to 103 mW.
  • Item
    Compact, high-repetition-rate source for broadband sum-frequency generation spectroscopy
    (Melville, NY : AIP Publishing, 2017) Heiner, Zsuzsanna; Petrov, Valentin; Mero, Mark
    We present a high-efficiency optical parametric source for broadband vibrational sum-frequency generation (BB-VSFG) for the chemically important mid-infrared spectral range at 2800-3600 cm-1 to study hydrogen bonding interactions affecting the structural organization of biomolecules at water interfaces. The source consists of a supercontinuum-seeded, dual-beam optical parametric amplifier with two broadband infrared output beams and a chirped sum-frequency mixing stage providing narrowband visible pulses with adjustable bandwidth. Utilizing a pulse energy of only 60 μJ from a turn-key, 1.03-μm pump laser operating at a repetition rate of 100 kHz, the source delivers 6-cycle infrared pulses at 1.5 and 3.2 μm with pulse energies of 4.6 and 1.8 μJ, respectively, and narrowband pulses at 0.515 μm with a pulse energy of 5.0 μJ. The 3.2-μm pulses are passively carrier envelope phase stabilized with fluctuations at the 180-mrad level over a 10-s time period. The 1.5-μm beamline can be exploited to deliver pump pulses for time-resolved studies after suitable frequency up-conversion. The high efficiency, stability, and two orders of magnitude higher repetition rate of the source compared to typically employed systems offer great potential for providing a boost in sensitivity in BB-VSFG experiments at a reduced cost.
  • Item
    35 W continuous-wave Ho:YAG single-crystal fiber laser
    (Cambridge : Cambridge Univ. Press, 2020) Zhao, Yongguang; Wang, Li; Chen, Weidong; Wang, Jianlei; Song, Qingsong; Xu, Xiaodong; Liu, Ying; Shen, Deyuan; Xu, Jun; Mateos, Xavier; Loiko, Pavel; Wang, Zhengping; Xu, Xinguang; Griebner, Uwe; Petrov, Valentin
    We report on a high-power Ho:YAG single-crystal fiber (SCF) laser inband pumped by a high-brightness Tm-fiber laser at 1908 nm. The Ho:YAG SCF grown by the micro-pulling-down technique exhibits a propagation loss of at. A continuous-wave output power of 35.2 W is achieved with a slope efficiency of 42.7%, which is to the best of our knowledge the highest power ever reported from an SCF-based laser in the 2 spectral range. © 2020 The Author(s). Published by Cambridge University Press in association with Chinese Laser Press.
  • Item
    Oriented zinc oxide nanorods: A novel saturable absorber for lasers in the near-infrared
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2018-10-23) Loiko, Pavel; Bora, Tanujjal; Serres, Josep Maria; Yu, Haohai; Aguiló, Magdalena; Díaz, Francesc; Griebner, Uwe; Petrov, Valentin; Mateos, Xavier; Dutta, Joydeep
    Zinc oxide (ZnO) nanorods (NRs) oriented along the crystallographic [001] axis are grown by the hydrothermal method on glass substrates. The ZnO NRs exhibit a broadband (1–2 µm) near-IR absorption ascribed to the singly charged zinc vacancy VZn−1. The saturable absorption of the ZnO NRs is studied at ≈1 µm under picosecond excitation, revealing a low saturation intensity, ≈10 kW/cm2, and high fraction of the saturable losses. The ZnO NRs are applied as saturable absorbers in diode-pumped Yb (≈1.03 µm) and Tm (≈1.94 µm) lasers generating nanosecond pulses. The ZnO NRs grown on various optical surfaces are promising broadband saturable absorbers for nanosecond near-IR lasers in bulk and waveguide geometries.
  • Item
    Semiconductor saturable absorber mirror mode-locked Yb:YAP laser
    (Washington, DC : Soc., 2022) Lin, Zhang-Lang; Xue, Wen-Ze; Zeng, Huang-Jun; Zhang, Ge; Zhao, Yongguang; Xu, Xiaodong; Xu, Jun; Loiko, Pavel; Mateos, Xavier; Lin, Haifeng; Petrov, Valentin; Wang, Li; Chen, Weidong
    We report on sub-30 fs pulse generation from a semiconductor saturable absorber mirror mode-locked Yb:YAP laser. Pumping by a spatially single-mode Yb fiber laser at 979 nm, soliton pulses as short as 29 fs were generated at 1091 nm with an average output power of 156 mW and a pulse repetition rate of 85.1 MHz. The maximum output power of the mode-locked Yb:YAP laser amounted to 320 mW for slightly longer pulses (32 fs) at an incident pump power of 1.52 W, corresponding to a peak power of 103 kW and an optical efficiency of 20.5%. To the best of our knowledge, this result represents the shortest pulses ever achieved from any solid-state Yb laser mode-locked by a slow, i.e., physical saturable absorber.
  • Item
    SESAM mode-locked Tm:Y2O3 ceramic laser
    (Washington, DC : Soc., 2022) Zhang, Ning; Liu, Shande; Wang, Zhanxin; Liu, Jian; Xu, Xiaodong; Xu, Jun; Wang, Jun; Liu, Peng; Ma, Jie; Shen, Deyuan; Tang, Dingyuan; Lin, Hui; Zhang, Jian; Chen, Weidong; Zhao, Yongguang; Griebner, Uwe; Petrov, Valentin
    We demonstrate a widely tunable and passively mode-locked Tm:Y2O3 ceramic laser in-band pumped by a 1627-nm Raman fiber laser. A tuning range of 318 nm, from 1833 to 2151 nm, is obtained in the continuous-wave regime. The SESAM mode-locked laser produces Fourier-transform-limited pulses as short as 75 fs at ∼ 2.06 µm with an average output power of 0.26 W at 86.3 MHz. For longer pulse durations of 178 fs, an average power of 0.59 W is achieved with a laser efficiency of 29%. This is, to the best of our knowledge, the first mode-locked Tm:Y2O3 laser in the femtosecond regime. The spectroscopic properties and laser performance confirm that Tm:Y2O3 transparent ceramics are a promising gain material for ultrafast lasers at 2 µm.