Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

SESAM mode-locked Tm:Y2O3 ceramic laser

2022, Zhang, Ning, Liu, Shande, Wang, Zhanxin, Liu, Jian, Xu, Xiaodong, Xu, Jun, Wang, Jun, Liu, Peng, Ma, Jie, Shen, Deyuan, Tang, Dingyuan, Lin, Hui, Zhang, Jian, Chen, Weidong, Zhao, Yongguang, Griebner, Uwe, Petrov, Valentin

We demonstrate a widely tunable and passively mode-locked Tm:Y2O3 ceramic laser in-band pumped by a 1627-nm Raman fiber laser. A tuning range of 318 nm, from 1833 to 2151 nm, is obtained in the continuous-wave regime. The SESAM mode-locked laser produces Fourier-transform-limited pulses as short as 75 fs at ∼ 2.06 µm with an average output power of 0.26 W at 86.3 MHz. For longer pulse durations of 178 fs, an average power of 0.59 W is achieved with a laser efficiency of 29%. This is, to the best of our knowledge, the first mode-locked Tm:Y2O3 laser in the femtosecond regime. The spectroscopic properties and laser performance confirm that Tm:Y2O3 transparent ceramics are a promising gain material for ultrafast lasers at 2 µm.

Loading...
Thumbnail Image
Item

Diode-pumped sub-50-fs Kerr-lens mode-locked Yb:GdYCOB laser

2021, Zeng, Huangjun, Lin, Haifeng, Lin, Zhanglang, Zhang, Lizhen, Lin, Zhoubin, Zhang, Ge, Petrov, Valentin, Loiko, Pavel, Mateos, Xavier, Wang, Li, Chen, Weidong

We present a sub-50-fs diode-pumped Kerr-lens mode-locked laser employing a novel “mixed” monoclinic Yb:Ca4(Gd,Y)O(BO3)3 (Yb:GdYCOB) crystal as a gain medium. Nearly Fourier-limited pulses as short as 43 fs at 1036.7 nm are generated with an average power of 84 mW corresponding to a pulse repetition rate of ∼70.8 MHz. A higher average power of 300 mW was achieved at the expense of the pulse duration (113 fs) corresponding to an optical-to-optical efficiency of 35.8% representing a record-high value for any Yb-doped borate crystal. Non-phase-matched self-frequency doubling is observed in the mode-locked regime with pronounced strong spectral fringes which originate from two delayed green replicas of the fundamental femtosecond pulses in the time domain.