Search Results

Now showing 1 - 6 of 6
  • Item
    Semiconductor saturable absorber mirror mode-locked Yb:YAP laser
    (Washington, DC : Soc., 2022) Lin, Zhang-Lang; Xue, Wen-Ze; Zeng, Huang-Jun; Zhang, Ge; Zhao, Yongguang; Xu, Xiaodong; Xu, Jun; Loiko, Pavel; Mateos, Xavier; Lin, Haifeng; Petrov, Valentin; Wang, Li; Chen, Weidong
    We report on sub-30 fs pulse generation from a semiconductor saturable absorber mirror mode-locked Yb:YAP laser. Pumping by a spatially single-mode Yb fiber laser at 979 nm, soliton pulses as short as 29 fs were generated at 1091 nm with an average output power of 156 mW and a pulse repetition rate of 85.1 MHz. The maximum output power of the mode-locked Yb:YAP laser amounted to 320 mW for slightly longer pulses (32 fs) at an incident pump power of 1.52 W, corresponding to a peak power of 103 kW and an optical efficiency of 20.5%. To the best of our knowledge, this result represents the shortest pulses ever achieved from any solid-state Yb laser mode-locked by a slow, i.e., physical saturable absorber.
  • Item
    35 W continuous-wave Ho:YAG single-crystal fiber laser
    (Cambridge : Cambridge Univ. Press, 2020) Zhao, Yongguang; Wang, Li; Chen, Weidong; Wang, Jianlei; Song, Qingsong; Xu, Xiaodong; Liu, Ying; Shen, Deyuan; Xu, Jun; Mateos, Xavier; Loiko, Pavel; Wang, Zhengping; Xu, Xinguang; Griebner, Uwe; Petrov, Valentin
    We report on a high-power Ho:YAG single-crystal fiber (SCF) laser inband pumped by a high-brightness Tm-fiber laser at 1908 nm. The Ho:YAG SCF grown by the micro-pulling-down technique exhibits a propagation loss of at. A continuous-wave output power of 35.2 W is achieved with a slope efficiency of 42.7%, which is to the best of our knowledge the highest power ever reported from an SCF-based laser in the 2 spectral range. © 2020 The Author(s). Published by Cambridge University Press in association with Chinese Laser Press.
  • Item
    Sub-100 fs mode-locked Tm:CLTGG laser
    (Washington, DC : Soc., 2021) Wang, Li; Chen, Weidong; Pan, Zhongben; Loiko, Pavel; Bae, Ji Eun; Rotermund, Fabian; Mateos, Xavier; Griebner, Uwe; Petrov, Valentin
    We report on the first sub-100 fs mode-locked laser operation of a Tm3+-doped disordered calcium lithium tantalum gallium garnet (Tm:CLTGG) crystal. Soliton mode-locking was initiated and stabilized by a transmission-type single-walled carbon nanotube saturable absorber. Pulses as short as 69 fs were achieved at a central wavelength of 2010.4 nm with an average power of 28 mW at a pulse repetition rate of ∼87.7 MHz. In the sub-100 fs regime, the maximum average output power amounted to 103 mW.
  • Item
    Watt-level femtosecond Tm-doped “mixed” sesquioxide ceramic laser in-band pumped by a Raman fiber laser at 1627 nm
    (Washington, DC : Soc., 2022) Zhang, Ning; Wang, Zhanxin; Liu, Shande; Jing, Wei; Huang, Hui; Huang, Zixuan; Tian, Kangzhen; Yang, Zhiyong; Zhao, Yongguang; Griebner, Uwe; Petrov, Valentin; Chen, Weidong
    We report on a semiconductor saturable absorber mirror mode-locked Tm:(Lu,Sc)2O3 ceramic laser in-band pumped by a Raman fiber laser at 1627 nm. The nonlinear refractive index (n2) of the Tm:(Lu,Sc)2O3 ceramic has been measured to be 4.66 × 10-20 m2/W at 2000 nm. An average output power up to 1.02 W at 2060 nm is achieved for transform-limited 280-fs pulses at a repetition rate of 86.5 MHz, giving an optical efficiency with respect to the absorbed pump power of 36.4%. Pulses as short as 66 fs at 2076 nm are produced at the expense of output power (0.3 W), corresponding to a spectral bandwidth of 69 nm. The present work reveals the potential of Tm3+-doped sesquioxide transparent ceramics for power scaling of femtosecond mode-locked bulk lasers emitting in the 2-μm spectral range.
  • Item
    Diode-pumped sub-50-fs Kerr-lens mode-locked Yb:GdYCOB laser
    (Washington, DC : Soc., 2021) Zeng, Huangjun; Lin, Haifeng; Lin, Zhanglang; Zhang, Lizhen; Lin, Zhoubin; Zhang, Ge; Petrov, Valentin; Loiko, Pavel; Mateos, Xavier; Wang, Li; Chen, Weidong
    We present a sub-50-fs diode-pumped Kerr-lens mode-locked laser employing a novel “mixed” monoclinic Yb:Ca4(Gd,Y)O(BO3)3 (Yb:GdYCOB) crystal as a gain medium. Nearly Fourier-limited pulses as short as 43 fs at 1036.7 nm are generated with an average power of 84 mW corresponding to a pulse repetition rate of ∼70.8 MHz. A higher average power of 300 mW was achieved at the expense of the pulse duration (113 fs) corresponding to an optical-to-optical efficiency of 35.8% representing a record-high value for any Yb-doped borate crystal. Non-phase-matched self-frequency doubling is observed in the mode-locked regime with pronounced strong spectral fringes which originate from two delayed green replicas of the fundamental femtosecond pulses in the time domain.
  • Item
    SESAM mode-locked Tm:Y2O3 ceramic laser
    (Washington, DC : Soc., 2022) Zhang, Ning; Liu, Shande; Wang, Zhanxin; Liu, Jian; Xu, Xiaodong; Xu, Jun; Wang, Jun; Liu, Peng; Ma, Jie; Shen, Deyuan; Tang, Dingyuan; Lin, Hui; Zhang, Jian; Chen, Weidong; Zhao, Yongguang; Griebner, Uwe; Petrov, Valentin
    We demonstrate a widely tunable and passively mode-locked Tm:Y2O3 ceramic laser in-band pumped by a 1627-nm Raman fiber laser. A tuning range of 318 nm, from 1833 to 2151 nm, is obtained in the continuous-wave regime. The SESAM mode-locked laser produces Fourier-transform-limited pulses as short as 75 fs at ∼ 2.06 µm with an average output power of 0.26 W at 86.3 MHz. For longer pulse durations of 178 fs, an average power of 0.59 W is achieved with a laser efficiency of 29%. This is, to the best of our knowledge, the first mode-locked Tm:Y2O3 laser in the femtosecond regime. The spectroscopic properties and laser performance confirm that Tm:Y2O3 transparent ceramics are a promising gain material for ultrafast lasers at 2 µm.