Search Results

Now showing 1 - 5 of 5
  • Item
    Towards New Robust Zn(II) Complexes for the Ring-Opening Polymerization of Lactide Under Industrially Relevant Conditions
    (Weinheim : Wiley-VCH, 2019) Schäfer, Pascal M.; Dankhoff, Katja; Rothemund, Matthias; Ksiazkiewicz, Agnieszka N.; Pich, Andrij; Schobert, Rainer; Weber, Birgit; Herres-Pawlis, Sonja
    The synthesis of bio-based and biodegradable plastics is a hot topic in research due to growing environmental problems caused by omnipresent plastics. As a result, polylactide, which has been known for years, has seen a tremendous increase in industrial production. Nevertheless, the manufacturing process using the toxic catalyst Sn(Oct)2 is very critical. As an alternative, five zinc acetate complexes have been synthesized with Schiff base-like ligands that exhibit high activity in the ring-opening polymerization of non-purified lactide. The systems bear different side arms in the ligand scaffold. The influence of these substituents has been analyzed. For a detailed description of the catalytic activities, the rate constants kapp and kp were determined using in-situ Raman spectroscopy at a temperature of 150 °C. The polymers produced have molar masses of up to 71 000 g mol−1 and are therefore suitable for a variety of applications. Toxicity measurements carried out for these complexes proved the nontoxicity of the systems. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Biadhesive Peptides for Assembling Stainless Steel and Compound Loaded Micro-Containers
    (Weinheim : Wiley-VCH, 2019) Apitius, Lina; Buschmann, Sven; Bergs, Christian; Schönauer, David; Jakob, Felix; Pich, Andrij; Schwaneberg, Ulrich
    Biadhesive peptides (peptesives) are an attractive tool for assembling two chemically different materials—for example, stainless steel and polycaprolactone (PCL). Stainless steel is used in medical stents and PCL is used as a biodegradable polymer for fabrication of tissue growth scaffolds and drug delivering micro-containers. Biadhesive peptides are composed of two domains (e.g., dermaseptin S1 and LCI) with different material-binding properties that are separated through a stiff peptide-spacer. The peptesive dermaseptin S1-domain Z-LCI immobilizes antibiotic-loaded PCL micro-containers on stainless steel surfaces. Immobilization is visualized by microscopy and field emission scanning electron microscopy analysis and released antibiotic from the micro-containers is confirmed through growth inhibition of Escherichia coli cells.
  • Item
    One‐Pot Two‐Step Chemoenzymatic Cascade for the Synthesis of a Bis‐benzofuran Derivative
    (Weinheim : Wiley-VCH Verl., 2019) Mertens, M.A. Stephanie; Thomas, Fabian; Nöth, Maximilian; Moegling, Julian; El‐Awaad, Islam; Sauer, Daniel F.; Dhoke, Gaurao V.; Xu, Wenjing; Pich, Andrij; Herres‐Pawlis, Sonja; Schwaneberg, Ulrich
    Chemoenzymatic cascades enable reactions with the high productivity of chemocatalysts and high selectivity of enzymes. Nevertheless, the combination of these different fields of catalysis is prone to mutual deactivation of metal- and biocatalysts. In this study, a one-pot sequential two-step catalytic cascade reaction was successfully implemented for the synthesis of a methylene-bridged bis(2-substituted benzofuran). In the first step, a palladium-free Sonogashira reaction is used for the synthesis of a benzofuran derivative. In the subsequent step, the formed 2-substituted benzofuran is hydroxylated by the monooxygenase P450 BM3 variant (A74S-F87V-L188Q) and undergoes further elimination reactions. The study proofs that combination of Cu scorpionate catalyzed Sonogashira cross-coupling and P450 mediated oxidation is possible and results in up to 84 % yield of the final product. The oxidation reaction is boosted by capturing inhibiting reaction components.
  • Item
    Heterolepic β‐Ketoiminate Zinc Phenoxide Complexes as Efficient Catalysts for the Ring Opening Polymerization of Lactide
    (Weinheim : Wiley-VCH, 2019) Ghosh, Swarup; Schäfer, Pascal M.; Dittrich, Dennis; Scheiper, Christoph; Steiniger, Phillip; Fink, Gerhard; Ksiazkiewicz, Agnieszka N.; Tjaberings, Alexander; Wölper, Christoph; Gröschel, André H.; Pich, Andrij; Herres‐Pawlis, Sonja; Schulz, Stephan
    Zinc phenoxide complexes L1ZnOAr 1–4 (L1=Me2NC2H4NC(Me)CHC(Me)O) and L2ZnOAr 5–8 (L2=Me2NC3H6NC(Me)CHC(Me)O) with donor-functionalized β-ketoiminate ligands (L1/2) and OAr substituents (Ar=Ph 1, 5; 2,6-Me2-C6H3 2, 6; 3,5-Me2-C6H3 3, 7; 4-Bu-C6H4 4, 8) with tuneable electronic and steric properties were synthesized and characterized. 1–8 adopt binuclear structures in the solid state except for 5, while they are monomeric in CDCl3 solution. 1–8 are active catalysts for the ring opening polymerization (ROP) of lactide (LA) in CH2Cl2 at ambient temperature and the catalytic activity is controlled by the electronic and steric properties of the OAr substituent, yielding polymers with high average molecular weight (Mn) and moderately controlled molecular weight distribution (MWDs). 1 and 5 showed a living polymerization character and kinetic studies on the ROP of L–LA with 1 and 5 proved first order dependencies on the monomer concentration. Homonuclear decoupled 1H-NMR analyses of polylactic acid (PLA) formed with rac-LA proved isotactic enrichment of the PLA microstructure. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Synthesis of acylglycerol derivatives by mechanochemistry
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2019) Ardila-Fierro, Karen J.; Pich, Andrij; Spehr, Marc; Hernández, José G.; Bolm, Carsten
    In recent times, many biologically relevant building blocks such as amino acids, peptides, saccharides, nucleotides and nucleosides, etc. have been prepared by mechanochemical synthesis. However, mechanosynthesis of lipids by ball milling techniques has remained essentially unexplored. In this work, a multistep synthetic route to access mono- and diacylglycerol derivatives by mechanochemistry has been realized, including the synthesis of diacylglycerol-coumarin conjugates.