Search Results

Now showing 1 - 2 of 2
  • Item
    Synthesis of Polyampholyte Janus-like Microgels by Coacervation of Reactive Precursors in Precipitation Polymerization
    (Weinheim : Wiley-VCH, 2020) Xu, Wenjing; Rudov, Andrey; Oppermann, Alex; Wypysek, Sarah; Kather, Michael; Schroeder, Ricarda; Richtering, Walter; Potemkin, Igor I.; Wöll, Dominik; Pich, Andrij
    Controlling the distribution of ionizable groups of opposite charge in microgels is an extremely challenging task, which could open new pathways to design a new generation of stimuli-responsive colloids. Herein, we report a straightforward approach for the synthesis of polyampholyte Janus-like microgels, where ionizable groups of opposite charge are located on different sides of the colloidal network. This synthesis approach is based on the controlled self-assembly of growing polyelectrolyte microgel precursors during the precipitation polymerization process. We confirmed the morphology of polyampholyte Janus-like microgels and demonstrate that they are capable of responding quickly to changes in both pH and temperature in aqueous solutions. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Dual Stimuli-Responsive Self-Assembly Behavior of a Tailor-Made ABC-Type Amphiphilic Tri-Block Copolymer
    (Hoboken, NJ [u.a.] : Wiley, 2020) Pal, Sanjay; Kather, Michael; Banerjee, Sovan Lal; Saha, Pabitra; Pich, Andrij; Singha, Nikhil K.
    This investigation describes the synthesis of a dual stimuli-responsive, amphiphilic ABC tri-block copolymer (BCP) based on the functional monomers via RAFT polymerization. In this case, ABC-type BCP was prepared based on N-isopropylacrylamide, n-butyl acrylate, and 4-vinylpyridine in DMF solvent using cyanomethyl dodecyl trithiocarbonate as the RAFT agent and azobisisobutyronitrile as a thermal initiator in a subsequent macro-RAFT approach, respectively. The BCPs were characterized by SEC, 1H-NMR, FTIR spectroscopy, and DSC analyses. Temperature and pH-dependent properties of the smart BCP micelles in aqueous medium were investigated using dynamic light scattering. Transmission electron microscopic images were taken at cryogenic and dry conditions to study the morphology of molecular assemblies of block copolymers in an aqueous medium. The phase and topographical images were captured by atomic force microscopy to understand the assembly of block copolymers in solvents of different polarities. The morphology of BCP micelles was transformed from flower-like to spherical in the presence of solvents with different polarities (H2O or CHCl3). © 2020 The Authors. Journal of Polymer Science published by Wiley Periodicals, Inc.