Search Results

Now showing 1 - 4 of 4
  • Item
    Enabling the measurement of particle sizes in stirred colloidal suspensions by embedding dynamic light scattering into an automated probe head
    (Amsterdam [u.a.] : Elsevier Science, 2016) de Kanter, Martinus; Meyer-Kirschner, Julian; Viell, Jörn; Mitsos, Alexander; Kather, Michael; Pich, Andrij; Janzen, Christoph
    A novel probe head design is introduced, which enables in-line monitoring of particle sizes in undiluted stirred fluids using dynamic light scattering. The novel probe head separates a small sample volume of 0.65 ml from the bulk liquid by means of an impeller. In this sample volume, particle sizing is performed using a commercially available fiber-optical backscatter probe. While conventional light scattering measurements in stirred media fail due to the superposition of Brownian’ motion and forced convection, undistorted measurements are possible with the proposed probe head. One measurement takes approximately 30 s used for liquid exchange by rotation of the impeller and for collection of scattered light. The probe head is applied for in-line monitoring of the particle growth during microgel synthesis by precipitation polymerization in a one liter laboratory reactor. The in-line measurements are compared to off-line measurements and show a good agreement.
  • Item
    Pros and Cons : Supramolecular or Macromolecular : What Is Best for Functional Hydrogels with Advanced Properties?
    (Weinheim : Wiley-VCH, 2020) Eelkema, Rienk; Pich, Andrij
    Hydrogels are fascinating soft materials with unique properties. Many biological systems are based on hydrogel-like structures, underlining their versatility and relevance. The properties of hydrogels strongly depend on the structure of the building blocks they are composed of, as well as the nature of interactions between them in the network structure. Herein, gel networks made by supramolecular interactions are compared to covalent macromolecular networks, drawing conclusions about their performance and application as responsive materials. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Undiscovered Potential: Ge Catalysts for Lactide Polymerization
    (Weinheim : Wiley-VCH, 2020) Rittinghaus, Ruth D.; Tremmel, Jakub; Růžička, Ales; Conrads, Christian; Albrecht, Pascal; Hoffmann, Alexander; Ksiazkiewicz, Agnieszka N.; Pich, Andrij; Jambor, Roman; Herres-Pawlis, Sonja
    Polylactide (PLA) is a high potential bioplastic that can replace oil-based plastics in a number of applications. To date, in spite of its known toxicity, a tin catalyst is used on industrial scale which should be replaced by a benign catalyst in the long run. Germanium is known to be unharmful while having similar properties as tin. Only few germylene catalysts are known so far and none has shown the potential for industrial application. We herein present Ge complexes in combination with zinc and copper, which show amazingly high polymerization activities for lactide in bulk at 150 °C. By systematical variation of the complex structure, proven by single-crystal XRD and DFT calculations, structure–property relationships are found regarding the polymerization activity. Even in the presence of zinc and copper, germanium acts as the active site for polymerizing probably through the coordination–insertion mechanism to high molar mass polymers. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Synthesis of Poly(N-vinylcaprolactam)-Based Microgels by Precipitation Polymerization: Pseudo-Bulk Model for Particle Growth and Size Distribution
    (Washington, DC : ACS Publications, 2019) Janssen, Franca A.L.; Kather, Michael; Ksiazkiewicz, Agnieszka; Pich, Andrij; Mitsos, Alexander
    Particle size distribution and in particular the mean particle size are key properties of microgels, which are determined by synthesis conditions. To describe particle growth and particle size distribution over the progress of synthesis of poly(N-vinylcaprolactam)-based microgels, a pseudo-bulk model for precipitation copolymerization with cross-linking is formulated. The model is fitted and compared to experimental data from reaction calorimetry and dynamic light scattering, showing good agreement with polymerization progress, final particle size, and narrow particle size distribution. Predictions of particle growth and reaction progress for different experimental setups are compared to the corresponding experimental data, demonstrating the predictive capability and limitations of the model. The comparison to reaction calorimetry measurements shows the strength in the prediction of the overall polymerization progress. The results for the prediction of the particle radii reveal significant deviations and highlight the demand for further investigation, including additional data. Copyright © 2019 American Chemical Society.