Search Results

Now showing 1 - 2 of 2
  • Item
    Towards New Robust Zn(II) Complexes for the Ring-Opening Polymerization of Lactide Under Industrially Relevant Conditions
    (Weinheim : Wiley-VCH, 2019) Schäfer, Pascal M.; Dankhoff, Katja; Rothemund, Matthias; Ksiazkiewicz, Agnieszka N.; Pich, Andrij; Schobert, Rainer; Weber, Birgit; Herres-Pawlis, Sonja
    The synthesis of bio-based and biodegradable plastics is a hot topic in research due to growing environmental problems caused by omnipresent plastics. As a result, polylactide, which has been known for years, has seen a tremendous increase in industrial production. Nevertheless, the manufacturing process using the toxic catalyst Sn(Oct)2 is very critical. As an alternative, five zinc acetate complexes have been synthesized with Schiff base-like ligands that exhibit high activity in the ring-opening polymerization of non-purified lactide. The systems bear different side arms in the ligand scaffold. The influence of these substituents has been analyzed. For a detailed description of the catalytic activities, the rate constants kapp and kp were determined using in-situ Raman spectroscopy at a temperature of 150 °C. The polymers produced have molar masses of up to 71 000 g mol−1 and are therefore suitable for a variety of applications. Toxicity measurements carried out for these complexes proved the nontoxicity of the systems. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Undiscovered Potential: Ge Catalysts for Lactide Polymerization
    (Weinheim : Wiley-VCH, 2020) Rittinghaus, Ruth D.; Tremmel, Jakub; Růžička, Ales; Conrads, Christian; Albrecht, Pascal; Hoffmann, Alexander; Ksiazkiewicz, Agnieszka N.; Pich, Andrij; Jambor, Roman; Herres-Pawlis, Sonja
    Polylactide (PLA) is a high potential bioplastic that can replace oil-based plastics in a number of applications. To date, in spite of its known toxicity, a tin catalyst is used on industrial scale which should be replaced by a benign catalyst in the long run. Germanium is known to be unharmful while having similar properties as tin. Only few germylene catalysts are known so far and none has shown the potential for industrial application. We herein present Ge complexes in combination with zinc and copper, which show amazingly high polymerization activities for lactide in bulk at 150 °C. By systematical variation of the complex structure, proven by single-crystal XRD and DFT calculations, structure–property relationships are found regarding the polymerization activity. Even in the presence of zinc and copper, germanium acts as the active site for polymerizing probably through the coordination–insertion mechanism to high molar mass polymers. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.