Search Results

Now showing 1 - 3 of 3
  • Item
    International comparison of health care carbon footprints
    (Bristol : IOP Publ., 2019) Pichler, Peter-Paul; Jaccard, Ingram S.; Weisz, Ulli; Weisz, Helga
    Climate change confronts the health care sector with a dual challenge. Accumulating climate impacts are putting an increased burden on the service provision of already stressed health care systems in many regions of the world. At the same time, the Paris agreement requires rapid emission reductions in all sectors of the global economy to stay well below the 2 °C target. This study shows that in OECD countries, China, and India, health care on average accounts for 5% of the national CO2 footprint making the sector comparable in importance to the food sector. Some countries have seen reduced CO2 emissions related to health care despite growing expenditures since 2000, mirroring their economy wide emission trends. The average per capita health carbon footprint across the country sample in 2014 was 0.6 tCO2, varying between 1.51 tCO2/cap in the US and 0.06 tCO2/cap in India. A statistical analysis shows that the carbon intensity of the domestic energy system, the energy intensity of the domestic economy, and health care expenditure together explain half of the variance in per capita health carbon footprints. Our results indicate that important leverage points exist inside and outside the health sector. We discuss our findings in the context of the existing literature on the potentials and challenges of reducing GHG emissions in the health and energy sector.
  • Item
    Carbon footprints of cities and other human settlements in the UK
    (Bristol : IOP Publishing, 2013) Minx, Jan; Baiocchi, Giovanni; Wiedmann, Thomas; Barrett, John; Creutzig, Felix; Feng, Kuishuang; Förster, Michael; Pichler, Peter-Paul; Weisz, Helga; Hubacek, Klaus
    A growing body of literature discusses the CO2 emissions of cities. Still, little is known about emission patterns across density gradients from remote rural places to highly urbanized areas, the drivers behind those emission patterns and the global emissions triggered by consumption in human settlements—referred to here as the carbon footprint. In this letter we use a hybrid method for estimating the carbon footprints of cities and other human settlements in the UK explicitly linking global supply chains to local consumption activities and associated lifestyles. This analysis comprises all areas in the UK, whether rural or urban. We compare our consumption-based results with extended territorial CO2 emission estimates and analyse the driving forces that determine the carbon footprint of human settlements in the UK. Our results show that 90% of the human settlements in the UK are net importers of CO2 emissions. Consumption-based CO2 emissions are much more homogeneous than extended territorial emissions. Both the highest and lowest carbon footprints can be found in urban areas, but the carbon footprint is consistently higher relative to extended territorial CO2 emissions in urban as opposed to rural settlement types. The impact of high or low density living remains limited; instead, carbon footprints can be comparatively high or low across density gradients depending on the location-specific socio-demographic, infrastructural and geographic characteristics of the area under consideration. We show that the carbon footprint of cities and other human settlements in the UK is mainly determined by socio-economic rather than geographic and infrastructural drivers at the spatial aggregation of our analysis. It increases with growing income, education and car ownership as well as decreasing household size. Income is not more important than most other socio-economic determinants of the carbon footprint. Possibly, the relationship between lifestyles and infrastructure only impacts carbon footprints significantly at higher spatial granularity.
  • Item
    The energy and carbon inequality corridor for a 1.5 °C compatible and just Europe
    (Bristol : IOP Publ., 2021-6-15) Jaccard, Ingram S; Pichler, Peter-Paul; Többen, Johannes; Weisz, Helga
    The call for a decent life for all within planetary limits poses a dual challenge: provide all people with the essential resources needed to live well and, collectively, not exceed the source and sink capacity of the biosphere to sustain human societies. We examine the corridor of possible distributions of household energy and carbon footprints that satisfy both minimum energy use for a decent life and available energy supply compatible with the 1.5 °C target in 2050. We estimated household energy and carbon footprints for expenditure deciles for 28 European countries in 2015 by combining data from national household budget surveys with the environmentally-extended multi-regional input–output model EXIOBASE. We found a top-to-bottom decile ratio (90:10) of 7.2 for expenditure, 3.1 for net energy and 2.6 for carbon. The lower inequality of energy and carbon footprints is largely attributable to inefficient energy and heating technologies in the lower deciles (mostly Eastern Europe). Adopting best technology across Europe would save 11 EJ of net energy annually, but increase environmental footprint inequality. With such inequality, both targets can only be met through the use of CCS, large efficiency improvements, and an extremely low minimum final energy use of 28 GJ per adult equivalent. Assuming a more realistic minimum energy use of about 55 GJ ae−1 and no CCS deployment, the 1.5 °C target can only be achieved at near full equality. We conclude that achieving both stated goals is an immense and widely underestimated challenge, the successful management of which requires far greater room for maneuver in monetary and fiscal terms than is reflected in the current European political discourse.