Search Results

Now showing 1 - 2 of 2
  • Item
    The role of the self-steepening effect in soliton compression due to cross-phase modulation by dispersive waves
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Pickartz, Sabrina
    We consider the compression and amplification of an ultrashort soliton pulse through the interaction with a weaker velocity-matched dispersive wave, in the so-called optical event horizon regime. We demonstrate that in this interaction scheme the self-steepening effect plays the key role in producing a strong soliton compression. While the interaction between the two pulses is mediated through cross phase modulation, the self-steepening effect produces an energy exchange, which enhances soliton compression. We provide numerical results and an analytical expression for energy transfer and compression rate.
  • Item
    Cancellation of Raman self-frequency shift for compression of optical pulses
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Pickartz, Sabrina; Brée, Carsten; Bandelow, Uwe; Amiranashvili, Shalva
    We study to which extent a fiber soliton can be manipulated by a specially chosen continuous pump wave. A group velocity matched pump scatters at the soliton, which is compressed due to the energy/momentum transfer. As the pump scattering is very sensitive to the velocity matching condition, soliton compression is quickly destroyed by the soliton self-frequency shift (SSFS). This is especially true for ultrashort pulses: SSFS inevitably impairs the degree of compression. We demonstrate numerically that soliton enhancement can be restored to some extent and the compressed soliton can be stabilized, provided that SSFS is canceled by a second pump wave. Still the available compression degree is considerably smaller than that in the Raman-free nonlinear fibers.