Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

The multi-photon induced Fano effect

2021, Litvinenko, K.L., Le, Nguyen H., Redlich, B., Pidgeon, C.R., Abrosimov, N.V., Andreev, Y., Huang, Zhiming, Murdin, B.N.

The ordinary Fano effect occurs in many-electron atoms and requires an autoionizing state. With such a state, photo-ionization may proceed via pathways that interfere, and the characteristic asymmetric resonance structures appear in the continuum. Here we demonstrate that Fano structure may also be induced without need of auto-ionization, by dressing the continuum with an ordinary bound state in any atom by a coupling laser. Using multi-photon processes gives complete, ultra-fast control over the interference. We show that a line-shape index q near unity (maximum asymmetry) may be produced in hydrogenic silicon donors with a relatively weak beam. Since the Fano lineshape has both constructive and destructive interference, the laser control opens the possibility of state-selective detection with enhancement on one side of resonance and invisibility on the other. We discuss a variety of atomic and molecular spectroscopies, and in the case of silicon donors we provide a calculation for a qubit readout application.

Loading...
Thumbnail Image
Item

Si:P as a laboratory analogue for hydrogen on high magnetic field white dwarf stars

2013, Murdin, B.N., Li, J., Pang, M.L.Y., Bowyer, E.T., Litvinenko, K.L., Clowes, S.K., Engelkamp, H., Pidgeon, C.R., Galbraith, I., Abrosimov, N.V., Riemann, H., Pavlov, S.G., Hübers, H.-W., Murdin, P.G.

Laboratory spectroscopy of atomic hydrogen in a magnetic flux density of 10 5 T (1 gigagauss), the maximum observed on high-field magnetic white dwarfs, is impossible because practically available fields are about a thousand times less. In this regime, the cyclotron and binding energies become equal. Here we demonstrate Lyman series spectra for phosphorus impurities in silicon up to the equivalent field, which is scaled to 32.8 T by the effective mass and dielectric constant. The spectra reproduce the high-field theory for free hydrogen, with quadratic Zeeman splitting and strong mixing of spherical harmonics. They show the way for experiments on He and H 2 analogues, and for investigation of He 2, a bound molecule predicted under extreme field conditions.