Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Improved ion beam tools for ultraprecision figure correction of curved aluminum mirror surfaces

2018, Bauer, Jens, Ulitschka, Melanie, Pietag, Fred, Arnold, Thomas

Aluminum mirrors offer great potential for satisfying the increasing demand in high-performance optical components for visible and ultraviolet applications. Ion beam figuring is an established finishing technology and in particular a promising technique for direct aluminum figure error correction. For the machining of strongly curved or arbitrarily shaped surfaces as well as the correction of low-to-mid spatial frequency figure errors, the usage of a high-performance ion beam source with low tool width is mandatory. For that reason, two different concepts of ion beam generation with high ion current density and narrow beam width are discussed. (1) A concave ion beam extraction grid system is used for apertureless constriction of ion beams in the low millimeter range. An oxygen ion beam with a full-width at half-maximum (FWHM) of 4.0 mm with an ion current density of 29.8  mA  /  cm2 was achieved. (2) For even smaller ion beams, a conic aperture design with a submillimeter-sized exit opening was tested. A nitrogen ion beam with an FWHM down to 0.62 mm with an ion current density of 4.6  mA  /  cm2 was obtained. In situ ion current density mapping is performed by scanning Faraday probe measurements. Special interest is set on the data evaluation for submillimeter ion beam analysis.

Loading...
Thumbnail Image
Item

Ion beam figuring machine for ultra-precision silicon spheres correction

2015, Arnold, Thomas, Pietag, Fred

In the framework of the Avogadro project, isotopically enriched 28Si spheres had been manufactured as artifacts for the assessment of various physical quantities including the sphere volume which finally leads to a very accurate determination of the Avogadro constant NA. The Avogadro constant is an important input datum for the redefinition of the unit of mass, the kilogram, on the basis of fundamental physical constants. During the recent measurement campaign, it has turned out that one of the main contributions to the overall uncertainty of NA is the sphericity error and consequently the interferometric volume measurement. Since chemical–mechanical polishing has reached its limits with respect to form accuracy due to the sensitivity of material removal rate to crystal orientation, it has been proposed to use ion beam figuring for further reduction of sphericity error from currently 50 nm PV to values <10 nm PV. In this paper, a new concept and realization of a multi-axis ion beam figuring machine dedicated for deterministic correction of silicon spheres is presented. Aspects of long term tool stability and alignment procedures in order to relate the ion beam footprint to the sphere surface are covered. Furthermore, a process dwell time calculation and tool path generation method dedicated for spheres manufacturing will be presented and discussed.