Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Beam damage of single semiconductor nanowires during X-ray nanobeam diffraction experiments

2020, Al Hassan, Ali, Lähnemann, Jonas, Davtyan, Arman, Al-Humaidi, Mahmoud, Herranz, Jesús, Bahrami, Danial, Anjum, Taseer, Bertram, Florian, Dey, Arka Bikash, Geelhaar, Lutz, Pietsch, Ullrich

Nanoprobe X-ray diffraction (nXRD) using focused synchrotron radiation is a powerful technique to study the structural properties of individual semiconductor nanowires. However, when performing the experiment under ambient conditions, the required high X-ray dose and prolonged exposure times can lead to radiation damage. To unveil the origin of radiation damage, a comparison is made of nXRD experiments carried out on individual semiconductor nanowires in their as-grown geometry both under ambient conditions and under He atmosphere at the microfocus station of the P08 beamline at the third-generation source PETRA III. Using an incident X-ray beam energy of 9 keV and photon flux of 1010 s-1, the axial lattice parameter and tilt of individual GaAs/In0.2Ga0.8As/GaAs core-shell nanowires were monitored by continuously recording reciprocal-space maps of the 111 Bragg reflection at a fixed spatial position over several hours. In addition, the emission properties of the (In,Ga)As quantum well, the atomic composition of the exposed nanowires and the nanowire morphology were studied by cathodoluminescence spectroscopy, energy-dispersive X-ray spectroscopy and scanning electron microscopy, respectively, both prior to and after nXRD exposure. Nanowires exposed under ambient conditions show severe optical and morphological damage, which was reduced for nanowires exposed under He atmosphere. The observed damage can be largely attributed to an oxidation process from X-ray-induced ozone reactions in air. Due to the lower heat-transfer coefficient compared with GaAs, this oxide shell limits the heat transfer through the nanowire side facets, which is considered as the main channel of heat dissipation for nanowires in the as-grown geometry.

Loading...
Thumbnail Image
Item

Threefold rotational symmetry in hexagonally shaped core–shell (In,Ga)As/GaAs nanowires revealed by coherent X-ray diffraction imaging

2017, Davtyan, Arman, Krause, Thilo, Kriegner, Dominik, Al-Hassan, Ali, Bahrami, Danial, Mostafavi Kashani, Seyed Mohammad, Lewis, Ryan B., Küpers, Hanno, Tahraoui, Abbes, Geelhaar, Lutz, Hanke, Michael, Leake, Steven John, Loffeld, Otmar, Pietsch, Ullrich

Coherent X-ray diffraction imaging at symmetric hhh Bragg reflections was used to resolve the structure of GaAs/In0.15Ga0.85As/GaAs core–shell–shell nanowires grown on a silicon (111) substrate. Diffraction amplitudes in the vicinity of GaAs 111 and GaAs 333 reflections were used to reconstruct the lost phase information. It is demonstrated that the structure of the core–shell–shell nanowire can be identified by means of phase contrast. Interestingly, it is found that both scattered intensity in the (111) plane and the reconstructed scattering phase show an additional threefold symmetry superimposed with the shape function of the investigated hexagonal nanowires. In order to find the origin of this threefold symmetry, elasticity calculations were performed using the finite element method and subsequent kinematic diffraction simulations. These suggest that a non-hexagonal (In,Ga)As shell covering the hexagonal GaAs core might be responsible for the observation.

Loading...
Thumbnail Image
Item

Impact of Electrical Current on Single GaAs Nanowire Structure

2021, Bahrami, Danial, AlHassan, Ali, Davtyan, Arman, Zhe, Ren, Anjum, Taseer, Herranz, Jesús, Geelhaar, Lutz, Novikov, Dmitri V., Timm, Rainer, Pietsch, Ullrich

The impact of electrical current on the structure of single free-standing Be-doped GaAs nanowires grown on a Si 111 substrate is investigated. Single nanowires have been structurally analyzed by X-ray nanodiffraction using synchrotron radiation before and after the application of an electrical current. The conductivity measurements on single nanowires in their as-grown geometry have been realized via W-probes installed inside a dual-beam focused ion beam/scanning electron microscopy chamber. Comparing reciprocal space maps of the 111 Bragg reflection, extracted perpendicular to the nanowire growth axis before and after the conductivity measurement, the structural impact of the electrical current is evidenced, including deformation of the hexagonal nanowire cross section, tilting, and bending with respect to the substrate normal. For electrical current densities below 30 A mm−2, the induced changes in the reciprocal space maps are negligible. However, for a current density of 347 A mm−2, the diffraction pattern is completely distorted. The mean cross section of the illuminated nanowire volume is reconstructed from the reciprocal space maps before and after the application of electrical current. Interestingly, the elongation of two pairs of opposing side facets accompanied by shrinkage of the third pair of facets is found. The variations in the nanowire diameter, as well as their tilt and bending, are confirmed by scanning electron microscopy. To explain these findings, material melting due to Joule heating during voltage/current application accompanied by anisotropic deformations induced by the W-probe is suggested.

Loading...
Thumbnail Image
Item

Lattice parameter accommodation between GaAs(111) nanowires and Si(111) substrate after growth via Au-assisted molecular beam epitaxy

2012, Davydok, Anton, Breuer, Steffen, Biermanns, Andreas, Geelhaar, Lutz, Pietsch, Ullrich

Using out-of-plane and in-plane X-ray diffraction techniques, we have investigated the structure at the interface between GaAs nanowires [NWs] grown by Au-assisted molecular beam epitaxy and the underlying Si(111) substrate. Comparing the diffraction pattern measured at samples grown for 5, 60, and 1,800 s, we find a plastic strain release of about 75% close to the NW-to-substrate interface even at the initial state of growth, probably caused by the formation of a dislocation network at the Si-to-GaAs interface. In detail, we deduce that during the initial stage, zinc-blende structure GaAs islands grow with a gradually increasing lattice parameter over a transition region of several 10 nm in the growth direction. In contrast, accommodation of the in-plane lattice parameter takes place within a thickness of about 10 nm. As a consequence, the ratio between out-of-plane and in-plane lattice parameters is smaller than the unity in the initial state of growth. Finally the wurtzite-type NWs grow on top of the islands and are free of strain.

Loading...
Thumbnail Image
Item

X-ray diffraction reveals the amount of strain and homogeneity of extremely bent single nanowires

2020, Davtyan, Arman, Kriegner, Dominik, Holý, Václav, AlHassan, Ali, Lewis, Ryan B., McDermott, Spencer, Geelhaar, Lutz, Bahrami, Danial, Anjum, Taseer, Ren, Zhe, Richter, Carsten, Novikov, Dmitri, Müller, Julian, Butz, Benjamin, Pietsch, Ullrich

Core-shell nanowires (NWs) with asymmetric shells allow for strain engineering of NW properties because of the bending resulting from the lattice mismatch between core and shell material. The bending of NWs can be readily observed by electron microscopy. Using X-ray diffraction analysis with a micro- and nano-focused beam, the bending radii found by the microscopic investigations are confirmed and the strain in the NW core is analyzed. For that purpose, a kinematical diffraction theory for highly bent crystals is developed. The homogeneity of the bending and strain is studied along the growth axis of the NWs, and it is found that the lower parts, i.e. close to the substrate/wire interface, are bent less than the parts further up. Extreme bending radii down to ∼3 μm resulting in strain variation of ∼2.5% in the NW core are found. © 2020.

Loading...
Thumbnail Image
Item

Exploiting flux shadowing for strain and bending engineering in core-shell nanowires

2022, Al Humaidi, Mahmoud, Jakob, Julian, Al Hassan, Ali, Davtyan, Arman, Schroth, Philipp, Feigl, Ludwig, Herranz, Jesús, Novikov, Dmitri, Geelhaar, Lutz, Baumbach, Tilo, Pietsch, Ullrich

Here we report on the non-uniform shell growth of InxGa1−xAs on the GaAs nanowire (NW) core by molecular beam epitaxy (MBE). The growth was realized on pre-patterned silicon substrates with the pitch size (p) ranging from 0.1 μm to 10 μm. Considering the preferable bending direction with respect to the MBE cells as well as the layout of the substrate pattern, we were able to modify the strain distribution along the NW growth axis and the subsequent bending profile. For NW arrays with a high number density, the obtained bending profile of the NWs is composed of straight (barely-strained) and bent (strained) segments with different lengths which depend on the pitch size. A precise control of the bent and straight NW segment length provides a method to design NW based devices with length selective strain distribution.