Search Results

Now showing 1 - 4 of 4
  • Item
    Controlling the Young’s modulus of a ß-type Ti-Nb alloy via strong texturing by LPBF
    (Amsterdam [u.a.] : Elsevier Science, 2022) Pilz, Stefan; Gustmann, Tobias; Günther, Fabian; Zimmermann, Martina; Kühn, Uta; Gebert, Annett
    The ß-type Ti-42Nb alloy was processed by laser powder bed fusion (LPBF) with an infrared top hat laser configuration aiming to control the Young’s modulus by creating an adapted crystallographic texture. Utilizing a top hat laser, a microstructure with a strong 〈0 0 1〉 texture parallel to the building direction and highly elongated grains was generated. This microstructure results in a strong anisotropy of the Young’s modulus that was modeled based on the single crystal elastic tensor and the experimental texture data. Tensile tests along selected loading directions were conducted to study the mechanical anisotropy and showed a good correlation with the modeled data. A Young’s modulus as low as 44 GPa was measured parallel to the building direction, which corresponds to a significant reduction of over 30% compared to the Young’s modulus of the Gaussian reference samples (67–69 GPa). At the same time a high 0.2% yield strength of 674 MPa was retained. The results reveal the high potential of LPBF processing utilizing a top hat laser configuration to fabricate patient-specific implants with an adapted low Young’s modulus along the main loading direction and a tailored mechanical biofunctionality.
  • Item
    Approach to Estimate the Phase Formation and the Mechanical Properties of Alloys Processed by Laser Powder Bed Fusion via Casting
    (Basel : MDPI, 2022) Kühn, Uta; Sander, Jan; Gabrysiak, Katharina Nicole; Giebeler, Lars; Kosiba, Konrad; Pilz, Stefan; Neufeld, Kai; Boehm, Anne Veronika; Hufenbach, Julia Kristin
    A high-performance tool steel with the nominal composition Fe85Cr4Mo8V2C1 (wt%) was processed by three different manufacturing techniques with rising cooling rates: conventional gravity casting, centrifugal casting and an additive manufacturing process, using laser powder bed fusion (LPBF). The resulting material of all processing routes reveals a microstructure, which is composed of martensite, austenite and carbides. However, comparing the size, the morphology and the weight fraction of the present phases, a significant difference of the gravity cast samples is evident, whereas the centrifugal cast material and the LPBF samples show certain commonalities leading finally to similar mechanical properties. This provides the opportunity to roughly estimate the mechanical properties of the material fabricated by LPBF. The major benefit arises from the required small material quantity and the low resources for the preparation of samples by centrifugal casting in comparison to the additive manufacturing process. Concluding, the present findings demonstrate the high attractiveness of centrifugal casting for the effective material screening and hence development of novel alloys adapted to LPBF-processing.
  • Item
    Designing the microstructural constituents of an additively manufactured near β Ti alloy for an enhanced mechanical and corrosion response
    (Amsterdam [u.a.] : Elsevier Science, 2022) Hariharan, Avinash; Goldberg, Phil; Gustmann, Tobias; Maawad, Emad; Pilz, Stefan; Schell, Frederic; Kunze, Tim; Zwahr, Christoph; Gebert, Annett
    Additive manufacturing of near β-type Ti-13Nb-13Zr alloys using the laser powder bed fusion process (LPBF) opens up new avenues to tailor the microstructure and subsequent macro-scale properties that aids in developing new generation patient-specific, load-bearing orthopedic implants. In this work, we investigate a wide range of LPBF parameter space to optimize the volumetric energy density, surface characteristics and melt track widths to achieve a stable process and part density of greater than 99 %. Further, optimized sample states were achieved via thermal post-processing using standard capability aging, super-transus (900 °C) and sub-transus (660 °C) heat treatment strategies with varying quenching mediums (air, water and ice). The applied heat treatment strategies induce various fractions of α, martensite (α', α'') in combination with the β phase and strongly correlated with the observed enhanced mechanical properties and a relatively low elastic modulus. In summary, our work highlights a practical strategy for optimizing the mechanical and corrosion properties of a LPBF produced near β-type Ti-13Nb-13Zr alloy via careful evaluation of processing and post-processing steps and the interrelation to the corresponding microstructures. Corrosion studies revealed excellent corrosion resistances of the heat-treated LPBF samples comparable to wrought Ti-13Nb-13Zr alloys.
  • Item
    Structure-property relationships of imperfect additively manufactured lattices based on triply periodic minimal surfaces
    (Amsterdam [u.a.] : Elsevier Science, 2022) Günther, Fabian; Hirsch, Franz; Pilz, Stefan; Wagner, Markus; Gebert, Annett; Kästner, Markus; Zimmermann, Martina
    Lattices based on triply periodic minimal surfaces (TPMS) have recently attracted increasing interest, but their additive manufacturing (AM) is fraught with imperfections that compromise their structural integrity. Initial research has addressed the influence of process-induced imperfections in lattices, but so far numerical work for TPMS lattices is insufficient. Therefore, in the present study, the structure–property relationships of TPMS lattices, including their imperfections, are investigated experimentally and numerically. The main focus is on a biomimetic Schoen I-WP network lattice made of laser powder bed fusion (LPBF) processed Ti-42Nb designed for bone tissue engineering (BTE). The lattice is scanned by computed tomography (CT) and its as-built morphology is examined before a modeling procedure for artificial reconstruction is developed. The structure–property relationships are analyzed by experimental and numerical compression tests. An anisotropic elastoplastic material model is parameterized for finite element analyses (FEA). The numerical results indicates that the reconstruction of the as-built morphology decisively improves the prediction accuracy compared to the ideal design. This work highlights the central importance of process-related imperfections for the structure–property relationships of TPMS lattices and proposes a modeling procedure to capture their implications.