Search Results

Now showing 1 - 2 of 2
  • Item
    Influence of dielectric thickness and electrode structure on the ion wind generation by micro fabricated plasma actuators
    (Bristol : IOP Publ., 2020) Hink, R.; Pipa, A.V.; Schäfer, J.; Caspari, R.; Weichwald, R.; Foest, R.; Brandenburg, R.
    Surface dielectric barrier discharges are investigated in order to explore the combined effects of barrier thickness and microstructure of the exposed electrode on the ion wind generation. Actuators with straight and structured high voltage electrodes with characteristic sizes of 200 and 250 µm and dielectric thicknesses of 0.5, 1 and 2 mm are compared. It is observed that: i) actuator efficiency of ion wind generation strongly depends on the applied voltage amplitude; ii) operation voltage depends on the dielectric thickness logarithmically; iii) electrode microstructure slightly increases the dynamic pressure (few percent in maximum), however the effect decreases with thicker dielectrics and smaller electrode structures; iv) the pattern of the most intensive discharge parts as well as the dielectric erosion repeats the regular structure of the electrodes down to 200 µm. Several identical samples are tested during different days to estimate the impact of the air humidity and the degradation of the dielectric. The microscale precision of the sample manufacture was accomplished by a commercial facility for printed circuit boards. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Spectroscopic study of plasma nitrocarburizing processes with an industrial-scale carbon active screen
    (Bristol : IOP Publ., 2020) Puth, A.; Kusýn, L.; Pipa, A.V.; Burlacov, I.; Dalke, A.; Hamann, S.; van Helden, J.H.; Biermann, H.; Röpke, J.
    The active screen plasma nitrocarburizing technology is an improvement of conventional plasma nitrocarburizing by providing a homogeneous temperature distribution within the workload and reducing soot formation. In this study, an industrial-scale active screen (AS) made of carbon-fibre-reinforced carbon serves as the cathode as well as the carbon source for the plasma-chemical processes taking place. The pulsed dc discharge was maintained at a few mbar of pressure while simultaneously being fed with a mixed gas flow of hydrogen and nitrogen ranging from 10 to 100 slh. Using in situ infrared laser absorption spectroscopy with lead salt tuneable diode lasers and external-cavity quantum cascade lasers, the temperatures and concentrations of HCN, NH3, CH4, C2H2, and CO have been monitored as a function of pressure and total gas flow. To simulate industrial treatment conditions the temperature of the sample workload in the centre of the reactor volume was kept at 773 K by varying the plasma power at the AS between 6 and 8.5 kW. The resulting spectroscopically measured temperatures in the plasma agreed well with this value. Concentrations of the various species ranged from 6 × 1013 to 1 × 1016 cm−3 with HCN being the most abundant species.