Search Results

Now showing 1 - 4 of 4
  • Item
    ESBL colonization and acquisition in a hospital population: The molecular epidemiology and transmission of resistance genes
    (San Francisco : Public Library of Science, 2019) Hagel, Stefan; Makarewicz, Oliwia; Hartung, Anita; Weiss, Daniel; Stein, Claudia; Brandt, Christian; Schumacher, Ulrike; Ehricht, Ralf; Patchev, Vladimir; Pletz, Mathias W.
    A prospective cohort study (German Clinical Trial Registry, No. 00005273) was performed to determine pre-admission colonization rates, hospital acquisition risk factors, subsequent infection rates and colonization persistence including the respective molecular epidemiology and transmission rates of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (EPE). A total of 342 EPEs were isolated from rectal swabs of 1,334 patients on admission, at discharge and 6 months after hospitalization. Inclusion criteria were patients’ age > 18 years, expected length of stays > 48 hours, external referral. The EPEs were characterized by routine microbiological methods, a DNA microarray and ERIC-PCR. EPE colonization was found in 12.7 % of admitted patients, with the highest rate (23.8 %) in patients from nursing homes. During hospitalization, 8.1 % of the patients were de novo EPE colonized, and invasive procedures, antibiotic and antacid therapies were independent risk factors. Only 1/169 patients colonized on admission developed a hospital-acquired EPE infection. Escherichia coli was the predominant EPE (88.9 %), and 92.1% of the ESBL phenotypes could be related to CTX-M variants with CTX-M-1/15 group being most frequent (88.9%). A corresponding β-lactamase could not be identified in five isolates. Hospital-acquired EPE infections in patients colonized before or during hospitalization were rare. The diversity of the EPE strains was much higher than that of the underlying plasmids. In seven patients, transmission of the respective plasmid across different species could be observed indicating that the current strain-based surveillance approaches may underestimate the risk of inter-species transmission of resistance genes.A prospective cohort study (German Clinical Trial Registry, No. 00005273) was performed to determine pre-admission colonization rates, hospital acquisition risk factors, subsequent infection rates and colonization persistence including the respective molecular epidemiology and transmission rates of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (EPE). A total of 342 EPEs were isolated from rectal swabs of 1,334 patients on admission, at discharge and 6 months after hospitalization. Inclusion criteria were patients’ age > 18 years, expected length of stays > 48 hours, external referral. The EPEs were characterized by routine microbiological methods, a DNA microarray and ERIC-PCR. EPE colonization was found in 12.7 % of admitted patients, with the highest rate (23.8 %) in patients from nursing homes. During hospitalization, 8.1 % of the patients were de novo EPE colonized, and invasive procedures, antibiotic and antacid therapies were independent risk factors. Only 1/169 patients colonized on admission developed a hospital-acquired EPE infection. Escherichia coli was the predominant EPE (88.9 %), and 92.1% of the ESBL phenotypes could be related to CTX-M variants with CTX-M-1/15 group being most frequent (88.9%). A corresponding β-lactamase could not be identified in five isolates. Hospital-acquired EPE infections in patients colonized before or during hospitalization were rare. The diversity of the EPE strains was much higher than that of the underlying plasmids. In seven patients, transmission of the respective plasmid across different species could be observed indicating that the current strain-based surveillance approaches may underestimate the risk of inter-species transmission of resistance genes.
  • Item
    Highly Sensitive Detection of the Antibiotic Ciprofloxacin by Means of Fiber Enhanced Raman Spectroscopy
    (Basel : MDPI, 2019) Wolf, Sebastian; Frosch, Timea; Popp, Juergen; Pletz, Mathias W.; Frosch, Torsten
    Sepsis and septic shock exhibit a rapid course and a high fatality rate. Antibiotic treatment is time-critical and precise knowledge of the antibiotic concentration during the patients’ treatment would allow individual dose adaption. Over- and underdosing will increase the antimicrobial efficacy and reduce toxicity. We demonstrated that fiber enhanced Raman spectroscopy (FERS) can be used to detect very low concentrations of ciprofloxacin in clinically relevant doses, down to 1.5 µM. Fiber enhancement was achieved in bandgap shifted photonic crystal fibers. The high linearity between the Raman signals and the drug concentrations allows a robust calibration for drug quantification. The needed sample volume was very low (0.58 µL) and an acquisition time of 30 s allowed the rapid monitoring of ciprofloxacin levels in a less invasive way than conventional techniques. These results demonstrate that FERS has a high potential for clinical in-situ monitoring of ciprofloxacin levels.
  • Item
    Fiber enhanced Raman spectroscopic analysis as a novel method for diagnosis and monitoring of diseases related to hyperbilirubinemia and hyperbiliverdinemia
    (Cambridge : Soc., 2016) Yan, Di; Domes, Christian; Domes, Robert; Frosch, Timea; Popp, Jürgen; Pletz, Mathias W.; Frosch, Torsten
    Fiber enhanced resonance Raman spectroscopy (FERS) is introduced for chemically selective and ultrasensitive analysis of the biomolecules hematin, hemoglobin, biliverdin, and bilirubin. The abilities for analyzing whole intact, oxygenated erythrocytes are proven, demonstrating the potential for the diagnosis of red blood cell related diseases, such as different types of anemia and hemolytic disorders. The optical fiber enables an efficient light-guiding within a miniaturized sample volume of only a few micro-liters and provides a tremendously improved analytical sensitivity (LODs of 0.5 μM for bilirubin and 0.13 μM for biliverdin with proposed improvements down to the pico-molar range). FERS is a less invasive method than the standard ones and could be a new analytical method for monitoring neonatal jaundice, allowing a precise control of the unconjugated serum bilirubin levels, and therefore, providing a better prognosis for newborns. The potential for sensing very low concentrations of the bile pigments may also open up new opportunities for cancer research. The abilities of FERS as a diagnostic tool are explored for the elucidation of jaundice with different etiologies including the rare, not yet well understood diseases manifested in green jaundice. This is demonstrated by quantifying clinically relevant concentrations of bilirubin and biliverdin simultaneously in the micro-molar range: for the case of hyperbilirubinemia due to malignancy, infectious hepatitis, cirrhosis or stenosis of the common bile duct (1 μM biliverdin together with 50 μM bilirubin) and for hyperbiliverdinemia (25 μM biliverdin and 75 μM bilirubin). FERS has high potential as an ultrasensitive analytical technique for a wide range of biomolecules and in various life-science applications.
  • Item
    The Staphylococcus aureus extracellular matrix protein (Emp) has a fibrous structure and binds to different extracellular matrices
    (Berlin : Nature Pulishing, 2017) Geraci, Jennifer; Neubauer, Svetlana; Pöllath, Christine; Hansen, Uwe; Rizzo, Fabio; Krafft, Christoph; Westermann, Martin; Hussain, Muzaffar; Peters, Georg; Pletz, Mathias W.; Löffler, Bettina; Makarewicz, Oliwia; Tuchscherr, Lorena
    The extracellular matrix protein Emp of Staphylococcus aureus is a secreted adhesin that mediates interactions between the bacterial surface and extracellular host structures. However, its structure and role in staphylococcal pathogenesis remain unknown. Using multidisciplinary approaches, including circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy, transmission electron (TEM) and immunogold transmission electron microscopy, functional ELISA assays and in silico techniques, we characterized the Emp protein. We demonstrated that Emp and its truncated forms bind to suprastructures in human skin, cartilage or bone, among which binding activity seems to be higher for skin compounds. The binding domain is located in the C-terminal part of the protein. CD spectroscopy revealed high contents of β-sheets (39.58%) and natively disordered structures (41.2%), and TEM suggested a fibrous structure consisting of Emp polymers. The N-terminus seems to be essential for polymerization. Due to the uncommonly high histidine content, we suggest that Emp represents a novel type of histidine-rich protein sharing structural similarities to leucine-rich repeats proteins as predicted by the I-TASSER algorithm. These new findings suggest a role of Emp in infections of deeper tissue and open new possibilities for the development of novel therapeutic strategies.