Search Results

Now showing 1 - 3 of 3
  • Item
    ESBL colonization and acquisition in a hospital population: The molecular epidemiology and transmission of resistance genes
    (San Francisco : Public Library of Science, 2019) Hagel, Stefan; Makarewicz, Oliwia; Hartung, Anita; Weiss, Daniel; Stein, Claudia; Brandt, Christian; Schumacher, Ulrike; Ehricht, Ralf; Patchev, Vladimir; Pletz, Mathias W.
    A prospective cohort study (German Clinical Trial Registry, No. 00005273) was performed to determine pre-admission colonization rates, hospital acquisition risk factors, subsequent infection rates and colonization persistence including the respective molecular epidemiology and transmission rates of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (EPE). A total of 342 EPEs were isolated from rectal swabs of 1,334 patients on admission, at discharge and 6 months after hospitalization. Inclusion criteria were patients’ age > 18 years, expected length of stays > 48 hours, external referral. The EPEs were characterized by routine microbiological methods, a DNA microarray and ERIC-PCR. EPE colonization was found in 12.7 % of admitted patients, with the highest rate (23.8 %) in patients from nursing homes. During hospitalization, 8.1 % of the patients were de novo EPE colonized, and invasive procedures, antibiotic and antacid therapies were independent risk factors. Only 1/169 patients colonized on admission developed a hospital-acquired EPE infection. Escherichia coli was the predominant EPE (88.9 %), and 92.1% of the ESBL phenotypes could be related to CTX-M variants with CTX-M-1/15 group being most frequent (88.9%). A corresponding β-lactamase could not be identified in five isolates. Hospital-acquired EPE infections in patients colonized before or during hospitalization were rare. The diversity of the EPE strains was much higher than that of the underlying plasmids. In seven patients, transmission of the respective plasmid across different species could be observed indicating that the current strain-based surveillance approaches may underestimate the risk of inter-species transmission of resistance genes.A prospective cohort study (German Clinical Trial Registry, No. 00005273) was performed to determine pre-admission colonization rates, hospital acquisition risk factors, subsequent infection rates and colonization persistence including the respective molecular epidemiology and transmission rates of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (EPE). A total of 342 EPEs were isolated from rectal swabs of 1,334 patients on admission, at discharge and 6 months after hospitalization. Inclusion criteria were patients’ age > 18 years, expected length of stays > 48 hours, external referral. The EPEs were characterized by routine microbiological methods, a DNA microarray and ERIC-PCR. EPE colonization was found in 12.7 % of admitted patients, with the highest rate (23.8 %) in patients from nursing homes. During hospitalization, 8.1 % of the patients were de novo EPE colonized, and invasive procedures, antibiotic and antacid therapies were independent risk factors. Only 1/169 patients colonized on admission developed a hospital-acquired EPE infection. Escherichia coli was the predominant EPE (88.9 %), and 92.1% of the ESBL phenotypes could be related to CTX-M variants with CTX-M-1/15 group being most frequent (88.9%). A corresponding β-lactamase could not be identified in five isolates. Hospital-acquired EPE infections in patients colonized before or during hospitalization were rare. The diversity of the EPE strains was much higher than that of the underlying plasmids. In seven patients, transmission of the respective plasmid across different species could be observed indicating that the current strain-based surveillance approaches may underestimate the risk of inter-species transmission of resistance genes.
  • Item
    Automated and rapid identification of multidrug resistant Escherichia coli against the lead drugs of acylureidopenicillins, cephalosporins, and fluoroquinolones using specific Raman marker bands
    (Weinheim : Wiley-VCH-Verl., 2020) Götz, Theresa; Dahms, Marcel; Kirchhoff, Johanna; Beleites, Claudia; Glaser, Uwe; Bohnert, Jürgen A.; Pletz, Mathias W.; Popp, Jürgen; Schlattmann, Peter; Neugebauer, Ute
    A Raman-based, strain-independent, semi-automated method is presented that allows the rapid (<3 hours) determination of antibiotic susceptibility of bacterial pathogens isolated from clinical samples. Applying a priori knowledge about the mode of action of the respective antibiotic, we identified characteristic Raman marker bands in the spectrum and calculated batch-wise weighted sum scores from standardized Raman intensity differences between spectra of antibiotic exposed and nonexposed samples of the same strains. The lead substances for three relevant antibiotic classes (fluoroquinolone ciprofloxacin, third-generation cephalosporin cefotaxime, ureidopenicillin piperacillin) against multidrug-resistant Gram-negative bacteria (MRGN) revealed a high sensitivity and specificity for the susceptibility testing of two Escherichia coli laboratory strains and 12 clinical isolates. The method benefits from the parallel incubation of control and treated samples, which reduces the variance due to alterations in cultivation conditions and the standardization of differences between batches leading to long-term comparability of Raman measurements. © 2020 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Molecular investigations on a chimeric strain of Staphylococcus aureus sequence type 80
    (San Francisco, California, US : PLOS, 2020) Gawlik, Darius; Ruppelt-Lorz, Antje; Müller, Elke; Reißig, Annett; Hotzel, Helmut; Braun, Sascha D.; Söderquist, Bo; Ziegler-Cordts, Albrecht; Stein, Claudia; Pletz, Mathias W.; Ehricht, Ralf; Monecke, Stefan
    A PVL-positive, methicillin-susceptible Staphylococcus aureus was cultured from pus from cervical lymphadenitis of a patient of East-African origin. Microarray hybridisation assigned the isolate to clonal complex (CC) 80 but revealed unusual features, including the presence of the ORF-CM14 enterotoxin homologue and of an ACME-III element as well as the absence of etD and edinB. The isolate was subjected to both, Illumina and Nanopore sequencing allowing characterisation of deviating regions within the strain´s genome. Atypical features of this strain were attributable to the presence of two genomic regions that originated from other S. aureus lineages and that comprised, respectively, 3% and 1.4% of the genome. One deviating region extended from walJ to sirB. It comprised ORF-CM14 and the ACME-III element. A homologous but larger fragment was also found in an atypical S. aureus CC1/ST567 strain whose lineage might have served as donor of this genomic region. This region itself is a chimera comprising fragments from CC1 as well as fragments of unknown origin. The other deviating region comprised the region from htsB to ecfA2, i.e., another 3% of the genome. It was very similar to CC1 sequences. Either this suggests an incorporation of CC1 DNA into the study strain, or alternatively a recombination event affecting “canonical” CC80. Thus, the study strain bears witness of several recombination events affecting supposedly core genomic genes. Although the exact mechanism is not yet clear, such chimerism seems to be an additional pathway in the evolution of S. aureus. This could facilitate also a transmission of virulence and resistance factors and therefore offer an additional evolutionary advantage.