Search Results

Now showing 1 - 3 of 3
  • Item
    Graphene-Like ZnO: A Mini Review
    (Basel : MDPI, 2016) Ta, Huy Q.; Zhao, Liang; Pohl, Darius; Pang, Jinbo; Trzebicka, Barbara; Rellinghaus, Bernd; Pribat, Didier; Gemming, Thomas; Liu, Zhongfan; Bachmatiuk, Alicja; Rümmeli, Mark H.
    The isolation of a single layer of graphite, known today as graphene, not only demonstrated amazing new properties but also paved the way for a new class of materials often referred to as two-dimensional (2D) materials. Beyond graphene, other 2D materials include h-BN, transition metal dichalcogenides (TMDs), silicene, and germanene, to name a few. All tend to have exciting physical and chemical properties which appear due to dimensionality effects and modulation of their band structure. A more recent member of the 2D family is graphene-like zinc oxide (g-ZnO) which also holds great promise as a future functional material. This review examines current progress in the synthesis and characterization of g-ZnO. In addition, an overview of works dealing with the properties of g-ZnO both in its pristine form and modified forms (e.g., nano-ribbon, doped material, etc.) is presented. Finally, discussions/studies on the potential applications of g-ZnO are reviewed and discussed.
  • Item
    Analysis of the Annealing Budget of Metal Oxide Thin-Film Transistors Prepared by an Aqueous Blade-Coating Process
    (Weinheim : Wiley-VCH, 2022) Tang, Tianyu; Dacha, Preetam; Haase, Katherina; Kreß, Joshua; Hänisch, Christian; Perez, Jonathan; Krupskaya, Yulia; Tahn, Alexander; Pohl, Darius; Schneider, Sebastian; Talnack, Felix; Hambsch, Mike; Reineke, Sebastian; Vaynzof, Yana; Mannsfeld, Stefan C. B.
    Metal oxide (MO) semiconductors are widely used in electronic devices due to their high optical transmittance and promising electrical performance. This work describes the advancement toward an eco-friendly, streamlined method for preparing thin-film transistors (TFTs) via a pure water-solution blade-coating process with focus on a low thermal budget. Low temperature and rapid annealing of triple-coated indium oxide thin-film transistors (3C-TFTs) and indium oxide/zinc oxide/indium oxide thin-film transistors (IZI-TFTs) on a 300 nm SiO2 gate dielectric at 300 °C for only 60 s yields devices with an average field effect mobility of 10.7 and 13.8 cm2 V−1 s−1, respectively. The devices show an excellent on/off ratio (>106), and a threshold voltage close to 0 V when measured in air. Flexible MO-TFTs on polyimide substrates with AlOx dielectrics fabricated by rapid annealing treatment can achieve a remarkable mobility of over 10 cm2 V−1 s−1 at low operating voltage. When using a longer post-coating annealing period of 20 min, high-performance 3C-TFTs (over 18 cm2 V−1 s−1) and IZI-TFTs (over 38 cm2 V−1 s−1) using MO semiconductor layers annealed at 300 °C are achieved.
  • Item
    Heterostructured Bismuth Telluride Selenide Nanosheets for Enhanced Thermoelectric Performance
    (Weinheim : Wiley-VCH GmbH, 2020) Bauer, Christoph; Veremchuk, Igor; Kunze, Christof; Benad, Albrecht; Dzhagan, Volodymyr M.; Haubold, Danny; Pohl, Darius; Schierning, Gabi; Nielsch, Kornelius; Lesnyak, Vladimir; Eychmüller, Alexander
    The n-type semiconductor system Bi2Te3Bi2Se3 is known as a low-temperature thermoelectric material with a potentially high efficiency. Herein, a facile approach is reported to synthesize core/shell heterostructured Bi2Te2Se/Bi2Te3 nanosheets (NSs) with lateral dimensions of 1-3 mu m and thickness of about 50nm. Bi2Te3 and Bi2Se3, as well as heterostructured Bi2Te2Se/Bi2Te3 NSs are obtained via colloidal synthesis. Heterostructured NSs show an inhomogeneous distribution of the chalcogen atoms forming selenium and tellurium-rich layers across the NS thickness, resulting in a core/shell structure. Detailed morphological studies reveal that these structures contain nanosized pores. These features contribute to the overall thermoelectric properties of the material, inducing strong phonon scattering at grain boundaries in compacted solids. NSs are processed into nanostructured bulks through spark plasma sintering of dry powders to form a thermoelectric material with high power factor. Electrical characterization of our materials reveals a strong anisotropic behavior in consolidated pellets. It is further demonstrated that by simple thermal annealing, core/shell structure can be controllably transformed into alloyed one. Using this approach pellets with Bi2Te2.55Se0.45 composition are obtained, which exhibit low thermal conductivity and high power factor for in-plane direction with zT of 1.34 at 400K.