Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Coherent Rabi dynamics of a superradiant spin ensemble in a microwave cavity

2017, Rose, B.C., Tyryshkin, A.M., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.-J., Thewalt, M.L.W., Itoh, K.M., Lyon, S.A.

We achieve the strong-coupling regime between an ensemble of phosphorus donor spins in a highly enriched 28Si crystal and a 3D dielectric resonator. Spins are polarized beyond Boltzmann equilibrium using spin-selective optical excitation of the no-phonon bound exciton transition resulting in N=3.6×1013 unpaired spins in the ensemble. We observe a normal mode splitting of the spin-ensemble–cavity polariton resonances of 2g√N=580  kHz (where each spin is coupled with strength g) in a cavity with a quality factor of 75 000 (γ≪κ≈60  kHz, where γ and κ are the spin dephasing and cavity loss rates, respectively). The spin ensemble has a long dephasing time (T∗2=9  μs) providing a wide window for viewing the dynamics of the coupled spin-ensemble–cavity system. The free-induction decay shows up to a dozen collapses and revivals revealing a coherent exchange of excitations between the superradiant state of the spin ensemble and the cavity at the rate g√N. The ensemble is found to evolve as a single large pseudospin according to the Tavis-Cummings model due to minimal inhomogeneous broadening and uniform spin-cavity coupling. We demonstrate independent control of the total spin and the initial Z projection of the psuedospin using optical excitation and microwave manipulation, respectively. We vary the microwave excitation power to rotate the pseudospin on the Bloch sphere and observe a long delay in the onset of the superradiant emission as the pseudospin approaches full inversion. This delay is accompanied by an abrupt π-phase shift in the peusdospin microwave emission. The scaling of this delay with the initial angle and the sudden phase shift are explained by the Tavis-Cummings model.

Loading...
Thumbnail Image
Item

Violation of a Leggett-Garg inequality with ideal non-invasive measurements

2012, Knee, G.C., Simmons, S., Gauger, E.M., Morton, J.J.L., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.-J., Itoh, K.M., Thewalt, M.L.W., Briggs, G.A.D., Benjamin, S.C.

The quantum superposition principle states that an entity can exist in two different states simultaneously, counter to our 'classical' intuition. Is it possible to understand a given system's behaviour without such a concept? A test designed by Leggett and Garg can rule out this possibility. The test, originally intended for macroscopic objects, has been implemented in various systems. However to date no experiment has employed the 'ideal negative result' measurements that are required for the most robust test. Here we introduce a general protocol for these special measurements using an ancillary system, which acts as a local measuring device but which need not be perfectly prepared. We report an experimental realization using spin-bearing phosphorus impurities in silicon. The results demonstrate the necessity of a non-classical picture for this class of microscopic system. Our procedure can be applied to systems of any size, whether individually controlled or in a spatial ensemble.

Loading...
Thumbnail Image
Item

A new generation of 99.999% enriched 28Si single crystals for the determination of Avogadro's constant

2017, Abrosimov, N.V., Aref’ev, D.G., Becker, P., Bettin, H., Bulanov, A.D., Churbanov, M.F., Filimonov, S.V., Gavva, V.A., Godisov, O.N., Gusev, A.V., Kotereva, T.V., Nietzold, D., Peters, M., Potapov, A.M., Pohl, H.-J., Pramann, A., Riemann, H., Scheel, P.-T., Stosch, R., Wundrack, S., Zakel, S.

A metrological challenge is currently underway to replace the present definition of the kilogram. One prerequisite for this is that the Avogadro constant, NA, which defines the number of atoms in a mole, needs to be determined with a relative uncertainty of better than 2  ×  10−8. The method applied in this case is based on the x-ray crystal density experiment using silicon crystals. The first attempt, in which silicon of natural isotopic composition was used, failed. The solution chosen subsequently was the usage of silicon highly enriched in 28Si from Russia. First, this paper reviews previous efforts from the very first beginnings to an international collaboration with the goal of producing a 28Si single crystal with a mass of 5 kg, an enrichment greater than 0.9999 and of sufficient chemical purity. Then the paper describes the activities of a follow-up project, conducted by PTB, to produce a new generation of highly enriched silicon in order to demonstrate the quasi-industrial and reliable production of more than 12 kg of the 28Si material with enrichments of five nines. The intention of this project is also to show the availability of 28Si single crystals as a guarantee for the future realisation of the redefined kilogram.