Search Results

Now showing 1 - 10 of 25
  • Item
    Patch-Wise Adaptive Weights Smoothing in R
    (Los Angeles, Calif. : UCLA, Dept. of Statistics, 2020) Polzehl, Jörg; Papafitsoros, Kostas; Tabelow, Karsten
    Image reconstruction from noisy data has a long history of methodological development and is based on a variety of ideas. In this paper we introduce a new method called patch-wise adaptive smoothing, that extends the propagation-separation approach by using comparisons of local patches of image intensities to define local adaptive weighting schemes for an improved balance of reduced variability and bias in the reconstruction result. We present the implementation of the new method in an R package aws and demonstrate its properties on a number of examples in comparison with other state-of-the art image reconstruction methods. © 2020, American Statistical Association. All rights reserved.
  • Item
    Improving Accuracy and Temporal Resolution of Learning Curve Estimation for within- and across-Session Analysis
    (San Francisco, California, US : PLOS, 2016) Deliano, Matthias; Tabelow, Karsten; König, Reinhard; Polzehl, Jörg
    Estimation of learning curves is ubiquitously based on proportions of correct responses within moving trial windows. Thereby, it is tacitly assumed that learning performance is constant within the moving windows, which, however, is often not the case. In the present study we demonstrate that violations of this assumption lead to systematic errors in the analysis of learning curves, and we explored the dependency of these errors on window size, different statistical models, and learning phase. To reduce these errors in the analysis of single-subject data as well as on the population level, we propose adequate statistical methods for the estimation of learning curves and the construction of confidence intervals, trial by trial. Applied to data from an avoidance learning experiment with rodents, these methods revealed performance changes occurring at multiple time scales within and across training sessions which were otherwise obscured in the conventional analysis. Our work shows that the proper assessment of the behavioral dynamics of learning at high temporal resolution can shed new light on specific learning processes, and, thus, allows to refine existing learning concepts. It further disambiguates the interpretation of neurophysiological signal changes recorded during training in relation to learning.
  • Item
    Ground reaction forces and external hip joint moments predict in vivo hip contact forces during gait
    (Amsterdam [u.a.] : Elsevier Science, 2022) Alves, Sónia A.; Polzehl, Jörg; Brisson, Nicholas M.; Bender, Alwina; Agres, Alison N.; Damm, Philipp; Duda, Georg N.
    Younger patients increasingly receive total hip arthroplasty (THA) as therapy for end-stage osteoarthritis. To maintain the long-term success of THA in such patients, avoiding extremely high hip loads, i.e., in vivo hip contact force (HCF), is considered essential. However, in vivo HCFs are difficult to determine and their direct measurement is limited to instrumented joint implants. It remains unclear whether external measurements of ground reaction forces (GRFs), a non-invasive, markerless and clinic-friendly measure can estimate in vivo HCFs. Using data from eight patients with instrumented hip implants, this study determined whether GRF time series data, alone or combined with other scalar variables such as hip joint moments (HJMs) and lean muscle volume (LMV), could predict the resultant HCF (rHCF) impulse using a functional linear modeling approach. Overall, single GRF time series data did not predict in vivo rHCF impulses. However, when GRF time series data were combined with LMV of the gluteus medius or sagittal HJM using a functional linear modeling approach, the in vivo rHCF impulse could be predicted from external measures only. Accordingly, this approach can predict in vivo rHCF impulses, and thus provide patients with useful insight regarding their gait behavior to avoid hip joint overloading.
  • Item
    High-resolution diffusion kurtosis imaging at 3T enabled by advanced post-processing
    (Lausanne : Frontiers Research Foundation, 2015) Mohammadi, Siawoosh; Tabelow, Karsten; Ruthotto, Lars; Feiweier, Thorsten; Polzehl, Jörg; Weiskopf, Nikolaus
    Diffusion Kurtosis Imaging (DKI) is more sensitive to microstructural differences and can be related to more specific micro-scale metrics (e.g., intra-axonal volume fraction) than diffusion tensor imaging (DTI), offering exceptional potential for clinical diagnosis and research into the white and gray matter. Currently DKI is acquired only at low spatial resolution (2–3 mm isotropic), because of the lower signal-to-noise ratio (SNR) and higher artifact level associated with the technically more demanding DKI. Higher spatial resolution of about 1 mm is required for the characterization of fine white matter pathways or cortical microstructure. We used restricted-field-of-view (rFoV) imaging in combination with advanced post-processing methods to enable unprecedented high-quality, high-resolution DKI (1.2 mm isotropic) on a clinical 3T scanner. Post-processing was advanced by developing a novel method for Retrospective Eddy current and Motion ArtifacT Correction in High-resolution, multi-shell diffusion data (REMATCH). Furthermore, we applied a powerful edge preserving denoising method, denoted as multi-shell orientation-position-adaptive smoothing (msPOAS). We demonstrated the feasibility of high-quality, high-resolution DKI and its potential for delineating highly myelinated fiber pathways in the motor cortex. REMATCH performs robustly even at the low SNR level of high-resolution DKI, where standard EC and motion correction failed (i.e., produced incorrectly aligned images) and thus biased the diffusion model fit. We showed that the combination of REMATCH and msPOAS increased the contrast between gray and white matter in mean kurtosis (MK) maps by about 35% and at the same time preserves the original distribution of MK values, whereas standard Gaussian smoothing strongly biases the distribution.
  • Item
    Structural adaptive segmentation for statistical parametric mapping
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Polzehl, Jörg; Voss, Henning U.; Tabelow, Karsten
    Functional Magnetic Resonance Imaging inherently involves noisy measurements and a severe multiple test problem. Smoothing is usually used to reduce the effective number of multiple comparisons and to locally integrate the signal and hence increase the signal-to-noise ratio. Here, we provide a new structural adaptive segmentation algorithm (AS) that naturally combines the signal detection with noise reduction in one procedure. Moreover, the new method is closely related to a recently proposed structural adaptive smoothing algorithm and preserves shape and spatial extent of activation areas without blurring the borders.
  • Item
    Structural adaptive smoothing: principles and applications in imaging
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Polzehl, Jörg; Tabelow, Karsten
    Structural adaptive smoothing provides a new concept of edge-preserving non-parametric smoothing methods. In imaging it employs qualitative assumption on the underlying homogeneity structure of the image. The chapter describes the main principles of the approach and discusses applications ranging from image denoising to the analysis of functional and diffusion weighted Magnetic Resonance experiments.
  • Item
    Local estimation of the noise level in MRI using structural adaptation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Tabelow, Karsten; Voss, Henning U.; Polzehl, Jörg
    We present a method for local estimation of the signal-dependent noise level in magnetic resonance images. The procedure uses a multi-scale approach to adaptively infer on local neighborhoods with similar data distribution. It exploits a maximum-likelihood estimator for the local noise level. The validity of the method was evaluated on repeated diffusion data of a phantom and simulated data using T1-data corrupted with artificial noise. Simulation results are compared with a recently proposed estimate. The method was applied to a high-resolution diffusion dataset to obtain improved diffusion model estimation results and to demonstrate its usefulness in methods for enhancing diffusion data.
  • Item
    Beyond the diffusion tensor model: the package dti
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Polzehl, Jörg; Tabelow, Karsten
    Diffusion weighted imaging is a magnetic resonance based method to investigate tissue micro-structure especially in the human brain via water diffusion. Since the standard diffusion tensor model for the acquired data failes in large portion of the brain voxel more sophisticated models have bee developed. Here, we report on the package dti and how some of these models can be used with the package.
  • Item
    Diffusion tensor imaging : structural adaptive smoothing
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Tabelow, Karsten; Polzehl, Jörg; Spokoiny, Vladimir; Voss, Henning U.
    Diffusion Tensor Imaging (DTI) data is characterized by a high noise level. Thus, estimation errors of quantities like anisotropy indices or the main diffusion direction used for fiber tracking are relatively large and may significantly confound the accuracy of DTI in clinical or neuroscience applications. Besides pulse sequence optimization, noise reduction by smoothing the data can be pursued as a complementary approach to increase the accuracy of DTI. Here, we suggest an anisotropic structural adaptive smoothing procedure, which is based on the Propagation-Separation method and preserves the structures seen in DTI and their different sizes and shapes. It is applied to artificial phantom data and a brain scan. We show that this method significantly improves the quality of the estimate of the diffusion tensor and hence enables one either to reduce the number of scans or to enhance the input for subsequent analysis such as fiber tracking.
  • Item
    Displacement and pressure reconstruction from magnetic resonance elastography images: Application to an in silico brain model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Galarce Marín, Felipe; Tabelow, Karsten; Polzehl, Jörg; Papanikas, Christos Panagiotis; Vavourakis, Vasileios; Lilaj, Ledia; Sack, Ingolf; Caiazzo, Alfonso
    This paper investigates a data assimilation approach for non-invasive quantification of intracranial pressure from partial displacement data, acquired through magnetic resonance elastography. Data assimilation is based on a parametrized-background data weak methodology, in which the state of the physical system tissue displacements and pressure fields is reconstructed from partially available data assuming an underlying poroelastic biomechanics model. For this purpose, a physics-informed manifold is built by sampling the space of parameters describing the tissue model close to their physiological ranges, to simulate the corresponding poroelastic problem, and compute a reduced basis. Displacements and pressure reconstruction is sought in a reduced space after solving a minimization problem that encompasses both the structure of the reduced-order model and the available measurements. The proposed pipeline is validated using synthetic data obtained after simulating the poroelastic mechanics on a physiological brain. The numerical experiments demonstrate that the framework can exhibit accurate joint reconstructions of both displacement and pressure fields. The methodology can be formulated for an arbitrary resolution of available displacement data from pertinent images. It can also inherently handle uncertainty on the physical parameters of the mechanical model by enlarging the physics-informed manifold accordingly. Moreover, the framework can be used to characterize, in silico, biomarkers for pathological conditions, by appropriately training the reduced-order model. A first application for the estimation of ventricular pressure as an indicator of abnormal intracranial pressure is shown in this contribution.