Search Results

Now showing 1 - 2 of 2
  • Item
    Linear and nonlinear relations between DSC parameters and elastic moduli for chemically and thermally treated human hair
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Wortmann, Franz J.; Wortmann, Gabriele; Popescu, Crisan
    Against the practical context of thermal straightening, hair samples were obtained with a chemical (bleaching) as well as a cumulative thermal history (0–800 s, 200 °C). On these samples, tensile testing and DSC analysis, both in the wet state, were conducted to obtain the elastic moduli Ew as well as denaturation temperatures TD and enthalpies ΔHD. 3D plots show overall linearity for the relationships between the parameters for natural hair. For bleached hair, pronounced nonlinearities develop beyond 300 s of thermal treatment. At this stage, TD as well as Ew approaches limiting values, consistent with the state of a highly cross-linked, thermoset polymer. 2D projections are used to investigate the correlations between pairs of parameters. The results show that bleaching imparts a specific sensitivity for thermal damage, namely, to the matrix proteins, which more readily than the intermediate filaments (IF) turn into a thermoset. Overall, correlations between parameters hold well prior to the thermoset range. It is thus suggested that tensile testing to determine the elastic modulus and DSC come to consistent and equivalent results, at least, for the current experimental context. However, while Ew combines contributions of IFs and matrix, DSC differentiates the specific property changes of these components. © 2019, The Author(s).
  • Item
    Synthesis and Characterization of Methyl Cellulose/Keratin Hydrolysate Composite Membranes
    (Basel : MDPI, 2017) Liebeck, Bernd M.; Hidalgo, Natalia; Roth, Georg; Popescu, Crisan; Böker, Alexander
    It is known that aqueous keratin hydrolysate solutions can be produced from feathers using superheated water as solvent. This method is optimized in this study by varying the time and temperature of the heat treatment in order to obtain a high solute content in the solution. With the dissolved polypeptides, films are produced using methyl cellulose as supporting material. Thereby, novel composite membranes are produced from bio-waste. It is expected that these materials exhibit both protein and polysaccharide properties. The influence of the embedded keratin hydrolysates on the methyl cellulose structure is investigated using Fourier transform infrared spectroscopy (FTIR) and wide angle X-ray diffraction (WAXD). Adsorption peaks of both components are present in the spectra of the membranes, while the X-ray analysis shows that the polypeptides are incorporated into the semi-crystalline methyl cellulose structure. This behavior significantly influences the mechanical properties of the composite films as is shown by tensile tests. Since further processing steps, e.g., crosslinking, may involve a heat treatment, thermogravimetric analysis (TGA) is applied to obtain information on the thermal stability of the composite materials.