Search Results

Now showing 1 - 2 of 2
  • Item
    Growth of all-carbon horizontally aligned single-walled carbon nanotubes nucleated from fullerene-based structures
    (London : BioMed Central, 2013) Ibrahim, Imad; Zhang, Yang; Popov, Alexey; Dunsch, Lothar; Büchner, Bernd; Cuniberti, Gianaurelio; Rümmeli, Mark H.
    All-carbon single-walled carbon nanotubes (SWCNTs) were successfully synthesized, nucleated using a fullerene derivative. A systematic investigation into the initial preparation of C60 fullerenes as growth nucleators for the SWCNTs was conducted. Enhancement in the yield of the produced SWCNT has been achieved with exploring different dispersing media for the fullerenes, the period, and environment of the initial thermal treatment of the fullerenes in addition to the use of different fullerene-based structures. The systematic studies significantly advance our understanding of the growth of the all-carbon catalyst-free single-walled carbon nanotubes. Field-effect transistors were fabricated using the catalyst-free SWCNT and then electrically characterized, showing current capacity as high as the well-studied catalyst-assisted nanotubes.
  • Item
    Adsorption characteristics of Er3N@C80on W(110) and Au(111) studied via scanning tunneling microscopy and spectroscopy
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017-5-23) Schimmel, Sebastian; Sun, Zhixiang; Baumann, Danny; Krylov, Denis; Samoylova, Nataliya; Popov, Alexey; Büchner, Bernd; Hess, Christian
    We performed a study on the fundamental adsorption characteristics of Er3N@C80 deposited on W(110) and Au(111) via room temperature scanning tunneling microscopy and spectroscopy. Adsorbed on W(110), a comparatively strong bond to the endohedral fullerenes inhibited the formation of ordered monolayer islands. In contrast, the Au(111)-surface provides a sufficiently high mobility for the molecules to arrange in monolayer islands after annealing. Interestingly, the fullerenes modify the herringbone reconstruction indicating that the molecule–substrate interaction is of considerable extent. Investigations concerning the electronic structure of Er3N@C80/Au(111) reveals spatial variations dependent on the termination of the Au(111) at the interface.