Search Results

Now showing 1 - 10 of 11
Loading...
Thumbnail Image
Item

Robust Single Molecule Magnet Monolayers on Graphene and Graphite with Magnetic Hysteresis up to 28 K

2021, Spree, Lukas, Liu, Fupin, Neu, Volker, Rosenkranz, Marco, Velkos, Georgios, Wang, Yaofeng, Schiemenz, Sandra, Dreiser, Jan, Gargiani, Pierluigi, Valvidares, Manuel, Chen, Chia-Hsiang, Büchner, Bernd, Avdoshenko, Stanislav M., Popov, Alexey A.

The chemical functionalization of fullerene single molecule magnet Tb2@C80(CH2Ph) enables the facile preparation of robust monolayers on graphene and highly oriented pyrolytic graphite from solution without impairing their magnetic properties. Monolayers of endohedral fullerene functionalized with pyrene exhibit magnetic bistability up to a temperature of 28 K. The use of pyrene terminated linker molecules opens the way to devise integration of spin carrying units encapsulated by fullerene cages on graphitic substrates, be it single-molecule magnets or qubit candidates. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Stabilizing a three-center single-electron metal–metal bond in a fullerene cage

2021, Jin, Fei, Xin, Jinpeng, Guan, Runnan, Xie, Xiao-Ming, Chen, Muqing, Zhang, Qianyan, Popov, Alexey A., Xie, Su-Yuan, Yang, Shangfeng

Trimetallic carbide clusterfullerenes (TCCFs) encapsulating a quinary M3C2 cluster represent a special family of endohedral fullerenes with an open-shell electronic configuration. Herein, a novel TCCF based on a medium-sized rare earth metal, dysprosium (Dy), is synthesized for the first time. The molecular structure of Dy3C2@Ih(7)-C80 determined by single crystal X-ray diffraction shows that the encapsulated Dy3C2 cluster adopts a bat ray configuration, in which the acetylide unit C2 is elevated above the Dy3 plane by ∼1.66 Å, while Dy–Dy distances are ∼3.4 Å. DFT computational analysis of the electronic structure reveals that the endohedral cluster has an unusual formal charge distribution of (Dy3)8+(C2)2−@C806− and features an unprecedented three-center single-electron Dy–Dy–Dy bond, which has never been reported for lanthanide compounds. Moreover, this electronic structure is different from that of the analogous Sc3C2@Ih(7)-C80 with a (Sc3)9+(C2)3−@C806− charge distribution and no metal–metal bonding.

Loading...
Thumbnail Image
Item

Metallofullerene photoswitches driven by photoinduced fullerene-to-metal electron transfer

2021, Zalibera, Michal, Ziegs, Frank, Schiemenz, Sandra, Dubrovin, Vasilii, Lubitz, Wolfgang, Savitsky, Anton, Deng, Shihu H.M., Wang, Xue-Bin, Advoshenko, Stanislav M., Popov, Alexey A.

We report on the discovery and detailed exploration of the unconventional photo-switching mechanism in metallofullerenes, in which the energy of the photon absorbed by the carbon cage π-system is transformed to mechanical motion of the endohedral cluster accompanied by accumulation of spin density on the metal atoms. Comprehensive photophysical and electron paramagnetic resonance (EPR) studies augmented by theoretical modelling are performed to address the phenomenon of the light-induced photo-switching and triplet state spin dynamics in a series of YxSc3−xN@C80 (x = 0–3) nitride clusterfullerenes. Variable temperature and time-resolved photoluminescence studies revealed a strong dependence of their photophysical properties on the number of Sc atoms in the cluster. All molecules in the series exhibit temperature-dependent luminescence assigned to the near-infrared thermally-activated delayed fluorescence (TADF) and phosphorescence. The emission wavelengths and Stokes shift increase systematically with the number of Sc atoms in the endohedral cluster, whereas the triplet state lifetime and S1–T1 gap decrease in this row. For Sc3N@C80, we also applied photoelectron spectroscopy to obtain the triplet state energy as well as the electron affinity. Spin distribution and dynamics in the triplet states are then studied by light-induced pulsed EPR and ENDOR spectroscopies. The spin–lattice relaxation times and triplet state lifetimes are determined from the temporal evolution of the electron spin echo after the laser pulse. Well resolved ENDOR spectra of triplets with a rich structure caused by the hyperfine and quadrupolar interactions with 14N, 45Sc, and 89Y nuclear spins are obtained. The systematic increase of the metal contribution to the triplet spin density from Y3N to Sc3N found in the ENDOR study points to a substantial fullerene-to-metal charge transfer in the excited state. These experimental results are rationalized with the help of ground-state and time-dependent DFT calculations, which revealed a substantial variation of the endohedral cluster position in the photoexcited states driven by the predisposition of Sc atoms to maximize their spin population.

Loading...
Thumbnail Image
Item

Exceptionally High Blocking Temperature of 17 K in a Surface-Supported Molecular Magnet

2021, Paschke, Fabian, Birk, Tobias, Enenkel, Vivien, Liu, Fupin, Romankov, Vladyslav, Dreiser, Jan, Popov, Alexey A., Fonin, Mikhail

Single-molecule magnets (SMMs) are among the most promising building blocks for future magnetic data storage or quantum computing applications, owing to magnetic bistability and long magnetic relaxation times. The practical device integration requires realization of 2D surface assemblies of SMMs, where each magnetic unit shows magnetic relaxation being sufficiently slow at application-relevant temperatures. Using X-ray absorption spectroscopy and X-ray magnetic circular dichroism, it is shown that sub-monolayers of Dy2 @C80 (CH2 Ph) dimetallofullerenes prepared on graphene by electrospray deposition exhibit magnetic behavior fully comparable to that of the bulk. Magnetic hysteresis and relaxation time measurements show that the magnetic moment remains stable for 100 s at 17 K, marking the blocking temperature TB(100) , being not only in excellent agreement with that of the bulk sample but also representing by far the highest one detected for a surface-supported single-molecule magnet. The reported findings give a boost to the efforts to stabilize and address the spin degree of freedom in molecular magnets aiming at the realization of SMM-based spintronic units.

Loading...
Thumbnail Image
Item

Substrate-Independent Magnetic Bistability in Monolayers of the Single-Molecule Magnet Dy2ScN@C80 on Metals and Insulators

2020, Krylov, Denis S., Schimmel, Sebastian, Dubrovin, Vasilii, Liu, Fupin, Nguyen, T.T. Nhung, Spree, Lukas, Chen, Chia-Hsiang, Velkos, Georgios, Bulbucan, Claudiu, Westerström, Rasmus, Studniarek, Michał, Dreiser, Jan, Hess, Christian, Büchner, Bernd, Avdoshenko, Stanislav M., Popov, Alexey A.

Magnetic hysteresis is demonstrated for monolayers of the single-molecule magnet (SMM) Dy2ScN@C80 deposited on Au(111), Ag(100), and MgO|Ag(100) surfaces by vacuum sublimation. The topography and electronic structure of Dy2ScN@C80 adsorbed on Au(111) were studied by STM. X-ray magnetic CD studies show that the Dy2ScN@C80 monolayers exhibit similarly broad magnetic hysteresis independent on the substrate used, but the orientation of the Dy2ScN cluster depends strongly on the surface. DFT calculations show that the extent of the electronic interaction of the fullerene molecules with the surface is increasing dramatically from MgO to Au(111) and Ag(100). However, the charge redistribution at the fullerene-surface interface is fully absorbed by the carbon cage, leaving the state of the endohedral cluster intact. This Faraday cage effect of the fullerene preserves the magnetic bistability of fullerene-SMMs on conducting substrates and facilitates their application in molecular spintronics. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Single-Molecule Magnets DyM2N@C80 and Dy2MN@C80 (M=Sc, Lu): The Impact of Diamagnetic Metals on Dy3+ Magnetic Anisotropy, Dy⋅⋅⋅Dy Coupling, and Mixing of Molecular and Lattice Vibrations

2020, Spree, Lukas, Schlesier, Christin, Kostanyan, Aram, Westerström, Rasmus, Greber, Thomas, Büchner, Bernd, Avdoshenko, Stanislav M., Popov, Alexey A.

The substitution of scandium in fullerene single-molecule magnets (SMMs) DySc2N@C80 and Dy2ScN@C80 by lutetium has been studied to explore the influence of the diamagnetic metal on the SMM performance of dysprosium nitride clusterfullerenes. The use of lutetium led to an improved SMM performance of DyLu2N@C80, which shows a higher blocking temperature of magnetization (TB=9.5 K), longer relaxation times, and broader hysteresis than DySc2N@C80 (TB=6.9 K). At the same time, Dy2LuN@C80 was found to have a similar blocking temperature of magnetization to Dy2ScN@C80 (TB=8 K), but substantially different interactions between the magnetic moments of the dysprosium ions in the Dy2MN clusters. Surprisingly, although the intramolecular dipolar interactions in Dy2LuN@C80 and Dy2ScN@C80 are of similar strength, the exchange interactions in Dy2LuN@C80 are close to zero. Analysis of the low-frequency molecular and lattice vibrations showed strong mixing of the lattice modes and endohedral cluster librations in k-space. This mixing simplifies the spin–lattice relaxation by conserving the momentum during the spin flip and helping to distribute the moment and energy further into the lattice. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Between Aromatic and Quinoid Structure: A Symmetrical UV to Vis/NIR Benzothiadiazole Redox Switch

2020, Rietsch, Philipp, Sobottka, Sebastian, Hoffmann, Katrin, Popov, Alexey A., Hildebrandt, Pascal, Sarkar, Biprajit, Resch-Genger, Ute, Eigler, Siegfried

Reversibly switching the light absorption of organic molecules by redox processes is of interest for applications in sensors, light harvesting, smart materials, and medical diagnostics. This work presents a symmetrical benzothiadiazole (BTD) derivative with a high fluorescence quantum yield in solution and in the crystalline state and shows by spectroelectrochemical analysis that reversible switching of UV absorption in the neutral state, to broadband Vis/NIR absorption in the 1st oxidized state, to sharp band Vis absorption in the 2nd oxidized state, is possible. For the one-electron oxidized species, formation of a delocalized radical is confirmed by electron paramagnetic resonance spectroelectrochemistry. Furthermore, our results reveal an increasing quinoidal distortion upon the 1st and 2nd oxidation, which can be used as the leitmotif for the development of BTD based redox switches. © 2020 The Authors. Published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

On the Electrochemical Reduction of 4-(Thiazol-2-ylazo)-Substituted 1-Chloronaphthalenes: Formation and Characterization of Stable Radical Anions

2020, Dmitrieva, Evgenia, Popov, Alexey A., Yu, Xiuling, Hartmann, Horst

The electrochemical reduction of two chloro-substituted 4-(thiazol-2-ylazo)has been studied by means of spectroelectrochemistry and simulated with the DFT method. Whereas the 1-chloro-4-(4-chlorothiazol-2-ylazo)forms both a stable radical anion and a dianion, the dianion of 1-chloro-4-(thiazol-2-ylazo)is instable. In the radical anion of both compounds, the spin densities are high not only at the azo moiety but also at C3 in the naphthalene and at C5 in the thiazole moiety. This is in agreement with former experimental results demonstrating the remarkable reactivity of these positions towards thiols which can act as nucleophiles as well as electron donors. © 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Tailoring Magnetic Features in Zigzag-Edged Nanographenes by Controlled Diels–Alder Reactions

2020, Ajayakumar, M.R., Fu, Yubin, Liu, Fupin, Komber, Hartmut, Tkachova, Valeriya, Xu, Chi, Zhou, Shengqiang, Popov, Alexey A., Liu, Junzhi, Feng, Xinliang

Nanographenes (NGs) with tunable electronic and magnetic properties have attracted enormous attention in the realm of carbon-based nanoelectronics. In particular, NGs with biradical character at the ground state are promising building units for molecular spintronics. However, most of the biradicaloids are susceptible to oxidation under ambient conditions and photolytic degradation, which hamper their further applications. Herein, we demonstrated the feasibility of tuning the magnetic properties of zigzag-edged NGs in order to enhance their stability via the controlled Diels–Alder reactions of peri-tetracene (4-PA). The unstable 4-PA (y0=0.72; half-life, t1/2=3 h) was transformed into the unprecedented benzo-peri-tetracenes (BPTs) by a one-side Diels–Alder reaction, which featured a biradical character at the ground state (y0=0.60) and exhibited remarkable stability under ambient conditions for several months. In addition, the fully zigzag-edged circumanthracenes (CAs) were achieved by two-fold or stepwise Diels–Alder reactions of 4-PA, in which the magnetic properties could be controlled by employing the corresponding dienophiles. Our work reported herein opens avenues for the synthesis of novel zigzag-edged NGs with tailor-made magnetic properties. © 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Magnetic hysteresis and strong ferromagnetic coupling of sulfur-bridged Dy ions in clusterfullerene Dy2S@C82

2020, Krylov, Denis, Velkos, Georgios, Chen, Chia-Hsiang, Büchner, Bernd, Kostanyan, Aram, Greber, Thomas, Avdoshenko, Stanislav M., Popov, Alexey A.

Two isomers of metallofullerene Dy2S@C82 with sulfur-bridged Dy ions exhibit broad magnetic hysteresis with sharp steps at sub-Kelvin temperature. Analysis of the level crossing events for different orientations of a magnetic field showed that even in powder samples, the hysteresis steps caused by quantum tunneling of magnetization can provide precise information on the strength of intramolecular Dy⋯Dy interactions. A comparison of different methods to determine the energy difference between ferromagnetic and antiferromagnetic states showed that sub-Kelvin hysteresis gives the most robust and reliable values. The ground state in Dy2S@C82 has ferromagnetic coupling of Dy magnetic moments, whereas the state with antiferromagnetic coupling in Cs and C3v cage isomers is 10.7 and 5.1 cm-1 higher, respectively. The value for the Cs isomer is among the highest found in metallofullerenes and is considerably larger than that reported in non-fullerene dinuclear molecular magnets. Magnetization relaxation times measured in zero magnetic field at sub-Kelvin temperatures tend to level off near 900 and 3200 s in Cs and C3v isomers. These times correspond to the quantum tunneling relaxation mechanism, in which the whole magnetic moment of the Dy2S@C82 molecule flips at once as a single entity. © the Partner Organisations.