Search Results

Now showing 1 - 7 of 7
  • Item
    Fulleretic well-defined scaffolds: Donor–fullerene alignment through metal coordination and its effect on photophysics
    (Hoboken, NJ : Wiley, 2016) Williams, Derek E.; Dolgopolova, Ekaterina A.; Godfrey, Danielle C.; Ermolaeva, Evgeniya D.; Pellechia, Perry J.; Greytak, Andrew B.; Smith, Mark D.; Avdoshenko, Stanislav M.; Popov, Alexey A.; Shustova, Natalia B.
    Herein, we report the first example of a crystalline metal–donor–fullerene framework, in which control of the donor–fullerene mutual orientation was achieved through chemical bond formation, in particular, by metal coordination. The 13C cross‐polarization magic‐angle spinning NMR spectroscopy, X‐ray diffraction, and time‐resolved fluorescence spectroscopy were performed for comprehensive structural analysis and energy‐transfer (ET) studies of the fulleretic donor–acceptor scaffold. Furthermore, in combination with photoluminescence measurements, the theoretical calculations of the spectral overlap function, Förster radius, excitation energies, and band structure were employed to elucidate the photophysical and ET processes in the prepared fulleretic material. We envision that the well‐defined fulleretic donor–acceptor materials could contribute not only to the basic science of fullerene chemistry but would also be used towards effective development of organic photovoltaics and molecular electronics.
  • Item
    Magnetic Hysteresis at 10 K in Single Molecule Magnet Self‐Assembled on Gold
    (Weinheim : Wiley-VCH, 2021) Chen, Chia-Hsiang; Spree, Lukas; Koutsouflakis, Emmanouil; Krylov, Denis S.; Liu, Fupin; Brandenburg, Ariane; Velkos, Georgios; Schimmel, Sebastian; Avdoshenko, Stanislav M.; Federov, Alexander; Weschke, Eugen; Choueikani, Fadi; Ohresser, Philippe; Dreiser, Jan; Büchner, Bernd; Popov, Alexey A.
    Tremendous progress in the development of single molecule magnets (SMMs) raises the question of their device integration. On this route, understanding the properties of low‐dimensional assemblies of SMMs, in particular in contact with electrodes, is a necessary but difficult step. Here, it is shown that fullerene SMM self‐assembled on metal substrate from solution retains magnetic hysteresis up to 10 K. Fullerene‐SMM DySc2N@C80 and Dy2ScN@C80 are derivatized to introduce a thioacetate group, which is used to graft SMMs on gold. Magnetic properties of grafted SMMs are studied by X‐ray magnetic circular dichroism and compared to the films of nonderivatized fullerenes prepared by sublimation. In self‐assembled films, the magnetic moments of the Dy ions are preferentially aligned parallel to the surface, which is different from the disordered orientation of endohedral clusters in nonfunctionalized fullerenes. Whereas chemical derivatization reduces the blocking temperature of magnetization and narrows the hysteresis of Dy2ScN@C80, for DySc2N@C80 equally broad hysteresis is observed as in the fullerene multilayer. Magnetic bistability in the DySc2N@C80 grafted on gold is sustained up to 10 K. This study demonstrates that self‐assembly of fullerene‐SMM derivatives offers a facile solution‐based procedure for the preparation of functional magnetic sub‐monolayers with excellent SMM performance.
  • Item
    Robust Single Molecule Magnet Monolayers on Graphene and Graphite with Magnetic Hysteresis up to 28 K
    (Weinheim : Wiley-VCH, 2021) Spree, Lukas; Liu, Fupin; Neu, Volker; Rosenkranz, Marco; Velkos, Georgios; Wang, Yaofeng; Schiemenz, Sandra; Dreiser, Jan; Gargiani, Pierluigi; Valvidares, Manuel; Chen, Chia-Hsiang; Büchner, Bernd; Avdoshenko, Stanislav M.; Popov, Alexey A.
    The chemical functionalization of fullerene single molecule magnet Tb2@C80(CH2Ph) enables the facile preparation of robust monolayers on graphene and highly oriented pyrolytic graphite from solution without impairing their magnetic properties. Monolayers of endohedral fullerene functionalized with pyrene exhibit magnetic bistability up to a temperature of 28 K. The use of pyrene terminated linker molecules opens the way to devise integration of spin carrying units encapsulated by fullerene cages on graphitic substrates, be it single-molecule magnets or qubit candidates. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Mononuclear clusterfullerene single‐molecule magnet containing strained fused‐pentagons stabilized by a nearly linear metal cyanide cluster
    (Hoboken, NJ : Wiley, 2017) Liu, Fupin; Wang, Song; Gao, Cong-Li; Deng, Qingming; Zhu, Xianjun; Kostanyan, Aram; Westerstrçm, Rasmus; Jin, Fei; Xie, Su‐Yuan; Popov, Alexey A.; Greber, Thomas; Yang, Shangfeng
    Fused‐pentagons results in an increase of local steric strain according to the isolated pentagon rule (IPR), and for all reported non‐IPR clusterfullerenes multiple (two or three) metals are required to stabilize the strained fused‐pentagons, making it difficult to access the single‐atom properties. Herein, we report the syntheses and isolations of novel non‐IPR mononuclear clusterfullerenes MNC@C76 (M=Tb, Y), in which one pair of strained fused‐pentagon is stabilized by a mononuclear cluster. The molecular structures of MNC@C76 (M=Tb, Y) were determined unambiguously by single‐crystal X‐ray diffraction, featuring a non‐IPR C2v(19138)‐C76 cage entrapping a nearly linear MNC cluster, which is remarkably different from the triangular MNC cluster within the reported analogous clusterfullerenes based on IPR‐obeying C82 cages. The TbNC@C76 molecule is found to be a field‐induced single‐molecule magnet (SMM).
  • Item
    Methane as a selectivity booster in the arc-discharge synthesis of endohedral fullerenes: Selective synthesis of the single-molecule magnet Dy2TiC@C80and Its Congener Dy2TiC2@C80
    (Hoboken, NJ : Wiley, 2015) Junghans, Katrin; Schlesier, Christin; Kostanyan, Aram; Samoylova, Nataliya A.; Deng, Qingming; Rosenkranz, Marco; Schiemenz, Sandra; Westerström, Rasmus; Greber, Thomas; Büchner, Bernd; Greber, Thomas; Popov, Alexey A.
    The use of methane as a reactive gas dramatically increases the selectivity of the arc‐discharge synthesis of M‐Ti‐carbide clusterfullerenes (M=Y, Nd, Gd, Dy, Er, Lu). Optimization of the process parameters allows the synthesis of Dy2TiC@C80‐I and its facile isolation in a single chromatographic step. A new type of cluster with an endohedral acetylide unit, M2TiC2@C80, is discovered along with the second isomer of M2TiC@C80. Dy2TiC@C80‐(I,II) and Dy2TiC2@C80‐I are shown to be single‐molecule magnets (SMM), but the presence of the second carbon atom in the cluster Dy2TiC2@C80 leads to substantially poorer SMM properties.
  • Item
    Self-assembly of endohedral metallofullerenes: A decisive role of cooling gas and metal-carbon bonding
    (Cambridge : Royal Society of Chemistry, 2016) Deng, Qingming; Heine, Thomas; Irle, Stephan; Popov, Alexey A.
    The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc–C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3).
  • Item
    Topological signatures in the electronic structure of graphene spirals
    (London : Nature Publishing Group, 2013) Avdoshenko, Stas M.; Koskinen, Pekka; Sevinçli, Haldun; Popov, Alexey A.; Rocha, Claudia G.
    Topology is familiar mostly from mathematics, but also natural sciences have found its concepts useful. Those concepts have been used to explain several natural phenomena in biology and physics, and they are particularly relevant for the electronic structure description of topological insulators and graphene systems. Here, we introduce topologically distinct graphene forms - graphene spirals - and employ density-functional theory to investigate their geometric and electronic properties. We found that the spiral topology gives rise to an intrinsic Rashba spin-orbit splitting. Through a Hamiltonian constrained by space curvature, graphene spirals have topologically protected states due to time-reversal symmetry. In addition, we argue that the synthesis of such graphene spirals is feasible and can be achieved through advanced bottom-up experimental routes that we indicate in this work.