Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Covalency versus magnetic axiality in Nd molecular magnets: Nd-photoluminescence, strong ligand-field, and unprecedented nephelauxetic effect in fullerenes NdM2N@C80 (M = Sc, Lu, Y)

2023, Yang, Wei, Rosenkranz, Marco, Velkos, Georgios, Ziegs, Frank, Dubrovin, Vasilii, Schiemenz, Sandra, Spree, Lukas, de Souza Barbosa, Matheus Felipe, Guillemard, Charles, Valvidares, Manuel, Büchner, Bernd, Liu, Fupin, Avdoshenko, Stanislav M., Popov, Alexey A.

Nd-based nitride clusterfullerenes NdM2N@C80 with rare-earth metals of different sizes (M = Sc, Y, Lu) were synthesized to elucidate the influence of the cluster composition, shape and internal strain on the structural and magnetic properties. Single crystal X-ray diffraction revealed a very short Nd-N bond length in NdSc2N@C80. For Lu and Y analogs, the further shortening of the Nd-N bond and pyramidalization of the NdM2N cluster are predicted by DFT calculations as a result of the increased cluster size and a strain caused by the limited size of the fullerene cage. The short distance between Nd and nitride ions leads to a very large ligand-field splitting of Nd3+ of 1100-1200 cm−1, while the variation of the NdM2N cluster composition and concomitant internal strain results in the noticeable modulation of the splitting, which could be directly assessed from the well-resolved fine structure in the Nd-based photoluminescence spectra of NdM2N@C80 clusterfullerenes. Photoluminescence measurements also revealed an unprecedentedly strong nephelauxetic effect, pointing to a high degree of covalency. The latter appears detrimental to the magnetic axiality despite the strong ligand field. As a result, the ground magnetic state has considerable transversal components of the pseudospin g-tensor, and the slow magnetic relaxation of NdSc2N@C80 could be observed by AC magnetometry only in the presence of a magnetic field. A combination of the well-resolved magneto-optical states and slow relaxation of magnetization suggests that Nd clusterfullerenes can be useful building blocks for magneto-photonic quantum technologies.

Loading...
Thumbnail Image
Item

Triangular Monometallic Cyanide Cluster Entrapped in Carbon Cage with Geometry-Dependent Molecular Magnetism

2016, Liu, Fupin, Gao, Cong-Li, Deng, Qingming, Zhu, Xianjun, Kostanyan, Aram, Westerström, Rasmus, Wang, Song, Tan, Yuan-Zhi, Tao, Jun, Xie, Su-Yuan, Popov, Alexey A., Greber, Thomas, Yang, Shangfeng

Clusterfullerenes are capable of entrapping a variety of metal clusters within carbon cage, for which the entrapped metal cluster generally keeps its geometric structure (e.g., bond distance and angle) upon changing the isomeric structure of fullerene cage, and whether the properties of the entrapped metal cluster is geometry-dependent remains unclear. Herein we report an unusual triangular monometallic cluster entrapped in fullerene cage by isolating several novel terbium cyanide clusterfullerenes (TbNC@C82) with different cage isomeric structures. Upon varying the isomeric structure of C82 cage from C2(5) to Cs(6) and to C2v(9), the entrapped triangular TbNC cluster exhibits significant distortions as evidenced by the changes of Tb–C(N) and C–N bond distances and variation of the Tb–C(N)–N(C) angle by up to 20°, revealing that the geometric structure of the entrapped triangular TbNC cluster is variable. All three TbNC@C82 molecules are found to be single-ion magnets, and the change of the geometric structure of TbNC cluster directly leads to the alternation of the magnetic relaxation time of the corresponding TbNC@C82 clusterfullerene.

Loading...
Thumbnail Image
Item

Perfluoroalkylfullerenes

2015, Boltalina, Olga V., Popov, Alexey A., Kuvychko, Igor V., Shustova, Natalia B., Strauss, Steven H.

New chemical derivatives that possess the greatest variety of addition patterns than any other class of fullerene derivatives represent an important addition to the existing classes of perfluorocarbons, that is, compounds that are composed only of the two types of atoms, carbon and fluorine. These include aromatic and aliphatic perfluorocarbons such as perfluorodecalin, perfluorononane, hexafluorobenzene, etc., which are important as fluorous solvents used in medicine. The propensity of perfluoroalkylfullerenes (PFAFs) to readily crystallize from organic solutions upon slow evaporation in open air provided a straightforward access to their molecular structures via X-ray crystallography. Another crucial aspect that ensures future success in the characterization of numerous PFAFs of higher fullerenes and endohedral metallofullerenes is the possibility to apply HPLC methodologies to the separation of product mixtures. PFAFs, especially those of C60 and C70, are unique fullerene derivatives in terms of the number of structurally characterized derivatives with different number of RF groups and different addition patterns.

Loading...
Thumbnail Image
Item

Self-assembly of endohedral metallofullerenes: A decisive role of cooling gas and metal-carbon bonding

2016, Deng, Qingming, Heine, Thomas, Irle, Stephan, Popov, Alexey A.

The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc–C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3).

Loading...
Thumbnail Image
Item

Metallofullerene photoswitches driven by photoinduced fullerene-to-metal electron transfer

2021, Zalibera, Michal, Ziegs, Frank, Schiemenz, Sandra, Dubrovin, Vasilii, Lubitz, Wolfgang, Savitsky, Anton, Deng, Shihu H.M., Wang, Xue-Bin, Advoshenko, Stanislav M., Popov, Alexey A.

We report on the discovery and detailed exploration of the unconventional photo-switching mechanism in metallofullerenes, in which the energy of the photon absorbed by the carbon cage π-system is transformed to mechanical motion of the endohedral cluster accompanied by accumulation of spin density on the metal atoms. Comprehensive photophysical and electron paramagnetic resonance (EPR) studies augmented by theoretical modelling are performed to address the phenomenon of the light-induced photo-switching and triplet state spin dynamics in a series of YxSc3−xN@C80 (x = 0–3) nitride clusterfullerenes. Variable temperature and time-resolved photoluminescence studies revealed a strong dependence of their photophysical properties on the number of Sc atoms in the cluster. All molecules in the series exhibit temperature-dependent luminescence assigned to the near-infrared thermally-activated delayed fluorescence (TADF) and phosphorescence. The emission wavelengths and Stokes shift increase systematically with the number of Sc atoms in the endohedral cluster, whereas the triplet state lifetime and S1–T1 gap decrease in this row. For Sc3N@C80, we also applied photoelectron spectroscopy to obtain the triplet state energy as well as the electron affinity. Spin distribution and dynamics in the triplet states are then studied by light-induced pulsed EPR and ENDOR spectroscopies. The spin–lattice relaxation times and triplet state lifetimes are determined from the temporal evolution of the electron spin echo after the laser pulse. Well resolved ENDOR spectra of triplets with a rich structure caused by the hyperfine and quadrupolar interactions with 14N, 45Sc, and 89Y nuclear spins are obtained. The systematic increase of the metal contribution to the triplet spin density from Y3N to Sc3N found in the ENDOR study points to a substantial fullerene-to-metal charge transfer in the excited state. These experimental results are rationalized with the help of ground-state and time-dependent DFT calculations, which revealed a substantial variation of the endohedral cluster position in the photoexcited states driven by the predisposition of Sc atoms to maximize their spin population.

Loading...
Thumbnail Image
Item

Magnetic hysteresis and strong ferromagnetic coupling of sulfur-bridged Dy ions in clusterfullerene Dy2S@C82

2020, Krylov, Denis, Velkos, Georgios, Chen, Chia-Hsiang, Büchner, Bernd, Kostanyan, Aram, Greber, Thomas, Avdoshenko, Stanislav M., Popov, Alexey A.

Two isomers of metallofullerene Dy2S@C82 with sulfur-bridged Dy ions exhibit broad magnetic hysteresis with sharp steps at sub-Kelvin temperature. Analysis of the level crossing events for different orientations of a magnetic field showed that even in powder samples, the hysteresis steps caused by quantum tunneling of magnetization can provide precise information on the strength of intramolecular Dy⋯Dy interactions. A comparison of different methods to determine the energy difference between ferromagnetic and antiferromagnetic states showed that sub-Kelvin hysteresis gives the most robust and reliable values. The ground state in Dy2S@C82 has ferromagnetic coupling of Dy magnetic moments, whereas the state with antiferromagnetic coupling in Cs and C3v cage isomers is 10.7 and 5.1 cm-1 higher, respectively. The value for the Cs isomer is among the highest found in metallofullerenes and is considerably larger than that reported in non-fullerene dinuclear molecular magnets. Magnetization relaxation times measured in zero magnetic field at sub-Kelvin temperatures tend to level off near 900 and 3200 s in Cs and C3v isomers. These times correspond to the quantum tunneling relaxation mechanism, in which the whole magnetic moment of the Dy2S@C82 molecule flips at once as a single entity. © the Partner Organisations.