Search Results

Now showing 1 - 2 of 2
  • Item
    Producing Policy-relevant Science by Enhancing Robustness and Model Integration for the Assessment of Global Environmental Change
    (Amsterdam [u.a.] : Elsevier Science, 2019) Warren, R.F.; Edwards, N.R.; Babonneau, F.; Bacon, P.M.; Dietrich, J.P.; Ford, R.W.; Garthwaite, P.; Gerten, D.; Goswami, S.; Haurie, A.; Hiscock, K.; Holden, P.B.; Hyde, M.R.; Joshi, S.R.; Kanudia, A.; Labriet, M.; Leimbach, M.; Oyebamiji, O.K.; Osborn, T.; Pizzileo, B.; Popp, A.; Price, J.; Riley, G.D.; Schaphoff, S.; Slavin, P.; Vielle, M.; Wallace, C.
    We use the flexible model coupling technology known as the bespoke framework generator to link established existing modules representing dynamics in the global economy (GEMINI_E3), the energy system (TIAM-WORLD), the global and regional climate system (MAGICC6, PLASIM-ENTS and ClimGEN), the agricultural system, the hydrological system and ecosystems (LPJmL), together in a single integrated assessment modelling (IAM) framework, building on the pre-existing framework of the Community Integrated Assessment System. Next, we demonstrate the application of the framework to produce policy-relevant scientific information. We use it to show that when using carbon price mechanisms to induce a transition from a high-carbon to a low-carbon economy, prices can be minimised if policy action is taken early, if burden sharing regimes are used, and if agriculture is intensified. Some of the coupled models have been made available for use at a secure and user-friendly web portal. © 2018 The Authors
  • Item
    Bio-IGCC with CCS as a long-term mitigation option in a coupled energy-system and land-use model
    (Amsterdam [u.a.] : Elsevier, 2011) Klein, D.; Bauer, N.; Bodirsky, B.; Dietrich, J.P.; Popp, A.
    This study analyses the impact of techno-economic performance of the BIGCC process and the effect of different biomass feedstocks on the technology's long term deployment in climate change mitigation scenarios. As the BIGCC technology demands high amounts of biomass raw material it also affects the land-use sector and is dependent on conditions and constraints on the land-use side. To represent the interaction of biomass demand and supply side the global energy-economy-climate model ReMIND is linked to the global land-use model MAgPIE. The link integrates biomass demand and price as well as emission prices and land-use emissions. Results indicate that BIGCC with CCS could serve as an important mitigation option and that it could even be the main bioenergy conversion technology sharing 33% of overall mitigation in 2100. The contribution of BIGCC technology to long-term climate change mitigation is much higher if grass is used as fuel instead of wood, provided that the grass-based process is highly efficient. The capture rate has to significantly exceed 60 % otherwise the technology is not applied. The overall primary energy consumption of biomass reacts much more sensitive to price changes of the biomass than to technoeconomic performance of the BIGCC process. As biomass is mainly used with CCS technologies high amounts of carbon are captured ranging from 130 GtC to 240 GtC (cumulated from 2005-2100) in different scenarios.