Search Results

Now showing 1 - 2 of 2
  • Item
    The world’s growing municipal solid waste: trends and impacts
    (Bristol : IOP Publ., 2020) Chen, David Meng-Chuen; Bodirsky, Benjamin Leon; Krueger, Tobias; Mishra, Abhijeet; Popp, Alexander
    Global municipal waste production causes multiple environmental impacts, including greenhouse gas emissions, ocean plastic accumulation, and nitrogen pollution. However, estimates of both past and future development of waste and pollution are scarce. We apply compositional Bayesian regression to produce the first estimates of past and future (1965–2100) waste generation disaggregated by composition and treatment, along with resultant environmental impacts, for every country. We find that total wastes grow at declining speed with economic development, and that global waste generation has increased from 635 Mt in 1965 to 1999 Mt in 2015 and reaches 3539 Mt by 2050 (median values, middle-of-the-road scenario). From 2015 to 2050, the global share of organic waste declines from 47% to 39%, while all other waste type shares increase, especially paper. The share of waste treated in dumps declines from 28% to 18%, and more sustainable recycling, composting, and energy recovery treatments increase. Despite these increases, we estimate environmental loads to continue increasing in the future, although yearly plastic waste input into the oceans has reached a peak. Waste production does not appear to follow the environmental Kuznets curve, and current projections do not meet UN SDGs for waste reduction. Our study shows that a continuation of current trends and improvements is insufficient to reduce pressures on natural systems and achieve a circular economy. Relative to 2015, the amount of recycled waste would need to increase from 363 Mt to 740 Mt by 2030 to begin reducing unsustainable waste generation, compared to 519 Mt currently projected.
  • Item
    Peatland protection and restoration are key for climate change mitigation
    (Bristol : IOP Publ., 2020) Humpenöder, Florian; Karstens, Kristine; Lotze-Campen, Hermann; Leifeld, Jens; Menichetti, Lorenzo; Barthelmes, Alexandra; Popp, Alexander
    Peatlands cover only about 3% the global land area, but store about twice as much carbon as global forest biomass. If intact peatlands are drained for agriculture or other human uses, peat oxidation can result in considerable CO2 emissions and other greenhouse gases (GHG) for decades or even centuries. Despite their importance, emissions from degraded peatlands have so far not been included explicitly in mitigation pathways compatible with the Paris Agreement. Such pathways include land-demanding mitigation options like bioenergy or afforestation with substantial consequences for the land system. Therefore, besides GHG emissions owing to the historic conversion of intact peatlands, the increased demand for land in current mitigation pathways could result in drainage of presently intact peatlands, e.g. for bioenergy production. Here, we present the first quantitative model-based projections of future peatland dynamics and associated GHG emissions in the context of a 2 °C mitigation pathway. Our spatially explicit land-use modelling approach with global coverage simultaneously accounts for future food demand, based on population and income projections, and land-based mitigation measures. Without dedicated peatland policy and even in the case of peatland protection, our results indicate that the land system would remain a net source of CO2 throughout the 21st century. This result is in contrast to the outcome of current mitigation pathways, in which the land system turns into a net carbon sink by 2100. However, our results indicate that it is possible to reconcile land use and GHG emissions in mitigation pathways through a peatland protection and restoration policy. According to our results, the land system would turn into a global net carbon sink by 2100, as projected by current mitigation pathways, if about 60% of present-day degraded peatlands would be rewetted in the coming decades, next to the protection of intact peatlands.