Search Results

Now showing 1 - 10 of 14
Loading...
Thumbnail Image
Item

Combining ambitious climate policies with efforts to eradicate poverty

2021, Soergel, Bjoern, Kriegler, Elmar, Bodirsky, Benjamin Leon, Bauer, Nico, Leimbach, Marian, Popp, Alexander

Climate change threatens to undermine efforts to eradicate extreme poverty. However, climate policies could impose a financial burden on the global poor through increased energy and food prices. Here, we project poverty rates until 2050 and assess how they are influenced by mitigation policies consistent with the 1.5 °C target. A continuation of historical trends will leave 350 million people globally in extreme poverty by 2030. Without progressive redistribution, climate policies would push an additional 50 million people into poverty. However, redistributing the national carbon pricing revenues domestically as an equal-per-capita climate dividend compensates this policy side effect, even leading to a small net reduction of the global poverty headcount (−6 million). An additional international climate finance scheme enables a substantial poverty reduction globally and also in Sub-Saharan Africa. Combining national redistribution with international climate finance thus provides an important entry point to climate policy in developing countries.

Loading...
Thumbnail Image
Item

Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement

2022, Humpenöder, Florian, Popp, Alexander, Schleussner, Carl-Friedrich, Orlov, Anton, Windisch, Michael Gregory, Menke, Inga, Pongratz, Julia, Havermann, Felix, Thiery, Wim, Luo, Fei, v. Jeetze, Patrick, Dietrich, Jan Philipp, Lotze-Campen, Hermann, Weindl, Isabelle, Lejeune, Quentin

Transformation pathways for the land sector in line with the Paris Agreement depend on the assumption of globally implemented greenhouse gas (GHG) emission pricing, and in some cases also on inclusive socio-economic development and sustainable land-use practices. In such pathways, the majority of GHG emission reductions in the land system is expected to come from low- and middle-income countries, which currently account for a large share of emissions from agriculture, forestry and other land use (AFOLU). However, in low- and middle-income countries the economic, financial and institutional barriers for such transformative changes are high. Here, we show that if sustainable development in the land sector remained highly unequal and limited to high-income countries only, global AFOLU emissions would remain substantial throughout the 21st century. Our model-based projections highlight that overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement. While also a scenario purely based on either global GHG emission pricing or on inclusive socio-economic development would achieve the stringent emissions reductions required, only the latter ensures major co-benefits for other Sustainable Development Goals, especially in low- and middle-income regions.

Loading...
Thumbnail Image
Item

Afforestation to mitigate climate change: Impacts on food prices under consideration of albedo effects

2016, Kreidenweis, Ulrich, Humpenöder, Florian, Stevanović, Miodrag, Bodirsky, Benjamin Leo, Kriegler, Elmar, Lotze-Campen, Hermann, Popp, Alexander

Ambitious climate targets, such as the 2 °C target, are likely to require the removal of carbon dioxide from the atmosphere. Afforestation is one such mitigation option but could, through the competition for land, also lead to food prices hikes. In addition, afforestation often decreases land-surface albedo and the amount of short-wave radiation reflected back to space, which results in a warming effect. In particular in the boreal zone, such biophysical warming effects following from afforestation are estimated to offset the cooling effect from carbon sequestration. We assessed the food price response of afforestation, and considered the albedo effect with scenarios in which afforestation was restricted to certain latitudinal zones. In our study, afforestation was incentivized by a globally uniform reward for carbon uptake in the terrestrial biosphere. This resulted in large-scale afforestation (2580 Mha globally) and substantial carbon sequestration (860 GtCO2) up to the end of the century. However, it was also associated with an increase in food prices of about 80% by 2050 and a more than fourfold increase by 2100. When afforestation was restricted to the tropics the food price response was substantially reduced, while still almost 60% cumulative carbon sequestration was achieved. In the medium term, the increase in prices was then lower than the increase in income underlying our scenario projections. Moreover, our results indicate that more liberalised trade in agricultural commodities could buffer the food price increases following from afforestation in tropical regions..

Loading...
Thumbnail Image
Item

Assessing the impacts of 1.5 °C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b)

2017, Frieler, Katja, Lange, Stefan, Piontek, Franziska, Reyer, Christopher P.O., Schewe, Jacob, Warszawski, Lila, Zhao, Fang, Chini, Louise, Denvil, Sebastien, Emanuel, Kerry, Geiger, Tobias, Halladay, Kate, Hurtt, George, Mengel, Matthias, Murakami, Daisuke, Ostberg, Sebastian, Popp, Alexander, Riva, Riccardo, Stevanovic, Miodrag, Suzuki, Tatsuo, Volkholz, Jan, Burke, Eleanor, Ciais, Philippe, Ebi, Kristie, Eddy, Tyler D., Elliott, Joshua, Galbraith, Eric, Gosling, Simon N., Hattermann, Fred, Hickler, Thomas, Hinkel, Jochen, Hof, Christian, Huber, Veronika, Jägermeyr, Jonas, Krysanova, Valentina, Marcé, Rafael, Müller Schmied, Hannes, Mouratiadou, Ioanna, Pierson, Don, Tittensor, Derek P., Vautard, Robert, van Vliet, Michelle, Biber, Matthias F., Betts, Richard A., Bodirsky, Benjamin Leon, Deryng, Delphine, Frolking, Steve, Jones, Chris D., Lotze, Heike K., Lotze-Campen, Hermann, Sahajpal, Ritvik, Thonicke, Kirsten, Tian, Hanqin, Yamagata, Yoshiki

In Paris, France, December 2015, the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the Intergovernmental Panel on Climate Change (IPCC) to provide a "special report in 2018 on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways". In Nairobi, Kenya, April 2016, the IPCC panel accepted the invitation. Here we describe the response devised within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to provide tailored, cross-sectorally consistent impact projections to broaden the scientific basis for the report. The simulation protocol is designed to allow for (1) separation of the impacts of historical warming starting from pre-industrial conditions from impacts of other drivers such as historical land-use changes (based on pre-industrial and historical impact model simulations); (2) quantification of the impacts of additional warming up to 1.5°C, including a potential overshoot and long-term impacts up to 2299, and comparison to higher levels of global mean temperature change (based on the low-emissions Representative Concentration Pathway RCP2.6 and a no-mitigation pathway RCP6.0) with socio-economic conditions fixed at 2005 levels; and (3) assessment of the climate effects based on the same climate scenarios while accounting for simultaneous changes in socio-economic conditions following the middle-of-the-road Shared Socioeconomic Pathway (SSP2, Fricko et al., 2016) and in particular differential bioenergy requirements associated with the transformation of the energy system to comply with RCP2.6 compared to RCP6.0. With the aim of providing the scientific basis for an aggregation of impacts across sectors and analysis of cross-sectoral interactions that may dampen or amplify sectoral impacts, the protocol is designed to facilitate consistent impact projections from a range of impact models across different sectors (global and regional hydrology, lakes, global crops, global vegetation, regional forests, global and regional marine ecosystems and fisheries, global and regional coastal infrastructure, energy supply and demand, temperature-related mortality, and global terrestrial biodiversity).

Loading...
Thumbnail Image
Item

Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies

2019, Luderer, Gunnar, Pehl, Michaja, Arvesen, Anders, Gibon, Thomas, Bodirsky, Benjamin L., de Boer, Harmen Sytze, Fricko, Oliver, Hejazi, Mohamad, Humpenöder, Florian, Iyer, Gokul, Mima, Silvana, Mouratiadou, Ioanna, Pietzcker, Robert C., Popp, Alexander, van den Berg, Maarten, van Vuuren, Detlef, Hertwich, Edgar G.

A rapid and deep decarbonization of power supply worldwide is required to limit global warming to well below 2 °C. Beyond greenhouse gas emissions, the power sector is also responsible for numerous other environmental impacts. Here we combine scenarios from integrated assessment models with a forward-looking life-cycle assessment to explore how alternative technology choices in power sector decarbonization pathways compare in terms of non-climate environmental impacts at the system level. While all decarbonization pathways yield major environmental co-benefits, we find that the scale of co-benefits as well as profiles of adverse side-effects depend strongly on technology choice. Mitigation scenarios focusing on wind and solar power are more effective in reducing human health impacts compared to those with low renewable energy, while inducing a more pronounced shift away from fossil and toward mineral resource depletion. Conversely, non-climate ecosystem damages are highly uncertain but tend to increase, chiefly due to land requirements for bioenergy.

Loading...
Thumbnail Image
Item

Between Scylla and Charybdis: Delayed mitigation narrows the passage between large-scale CDR and high costs

2018, Strefler, Jessica, Bauer, Nico, Kriegler, Elmar, Popp, Alexander, Giannousakis, Anastasis, Edenhofer, Ottmar

There are major concerns about the sustainability of large-scale deployment of carbon dioxide removal (CDR) technologies. It is therefore an urgent question to what extent CDR will be needed to implement the long term ambition of the Paris Agreement. Here we show that ambitious near term mitigation significantly decreases CDR requirements to keep the Paris climate targets within reach. Following the nationally determined contributions (NDCs) until 2030 makes 2 °C unachievable without CDR. Reducing 2030 emissions by 20% below NDC levels alleviates the trade-off between high transitional challenges and high CDR deployment. Nevertheless, transitional challenges increase significantly if CDR is constrained to less than 5 Gt CO2 a−1 in any year. At least 8 Gt CO2 a−1 CDR are necessary in the long term to achieve 1.5 °C and more than 15 Gt CO2 a−1 to keep transitional challenges in bounds.

Loading...
Thumbnail Image
Item

Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios

2015, Wiebe, Keith, Lotze-Campen, Hermann, Sands, Ronald, Tabeau, Andrzej, van der Mensbrugghe, Dominique, Biewald, Anne, Bodirsky, Benjamin, Islam, Shahnila, Kavallari, Aikaterini, Mason-D'Croz, Daniel, Müller, Christoph, Popp, Alexander, Robertson, Richard, Robinson, Sherman, van Meijl, Hans, Willenbockel, Dirk

Previous studies have combined climate, crop and economic models to examine the impact of climate change on agricultural production and food security, but results have varied widely due to differences in models, scenarios and input data. Recent work has examined (and narrowed) these differences through systematic model intercomparison using a high-emissions pathway to highlight the differences. This paper extends that analysis to explore a range of plausible socioeconomic scenarios and emission pathways. Results from multiple climate and economic models are combined to examine the global and regional impacts of climate change on agricultural yields, area, production, consumption, prices and trade for coarse grains, rice, wheat, oilseeds and sugar crops to 2050. We find that climate impacts on global average yields, area, production and consumption are similar across shared socioeconomic pathways (SSP 1, 2 and 3, as we implement them based on population, income and productivity drivers), except when changes in trade policies are included. Impacts on trade and prices are higher for SSP 3 than SSP 2, and higher for SSP 2 than for SSP 1. Climate impacts for all variables are similar across low to moderate emissions pathways (RCP 4.5 and RCP 6.0), but increase for a higher emissions pathway (RCP 8.5). It is important to note that these global averages may hide regional variations. Projected reductions in agricultural yields due to climate change by 2050 are larger for some crops than those estimated for the past half century, but smaller than projected increases to 2050 due to rising demand and intrinsic productivity growth. Results illustrate the sensitivity of climate change impacts to differences in socioeconomic and emissions pathways. Yield impacts increase at high emissions levels and vary with changes in population, income and technology, but are reduced in all cases by endogenous changes in prices and other variables.

Loading...
Thumbnail Image
Item

Key determinants of global land-use projections

2019, Stehfest, Elke, van Zeist, Willem-Jan, Valin, Hugo, Havlik, Petr, Popp, Alexander, Kyle, Page, Tabeau, Andrzej, Mason-D’Croz, Daniel, Hasegawa, Tomoko, Bodirsky, Benjamin L., Calvin, Katherine, Doelman, Jonathan C., Fujimori, Shinichiro, Humpenöder, Florian, Lotze-Campen, Hermann, van Meijl, Hans, Wiebe, Keith

Land use is at the core of various sustainable development goals. Long-term climate foresight studies have structured their recent analyses around five socio-economic pathways (SSPs), with consistent storylines of future macroeconomic and societal developments; however, model quantification of these scenarios shows substantial heterogeneity in land-use projections. Here we build on a recently developed sensitivity approach to identify how future land use depends on six distinct socio-economic drivers (population, wealth, consumption preferences, agricultural productivity, land-use regulation, and trade) and their interactions. Spread across models arises mostly from diverging sensitivities to long-term drivers and from various representations of land-use regulation and trade, calling for reconciliation efforts and more empirical research. Most influential determinants for future cropland and pasture extent are population and agricultural efficiency. Furthermore, land-use regulation and consumption changes can play a key role in reducing both land use and food-security risks, and need to be central elements in sustainable development strategies.

Loading...
Thumbnail Image
Item

Livestock in a changing climate: Production system transitions as an adaptation strategy for agriculture

2015, Weindl, Isabelle, Lotze-Campen, Hermann, Popp, Alexander, Müller, Christoph, Havlík, Petr, Herrero, Mario, Schmitz, Christoph, Rolinski, Susanne

Livestock farming is the world's largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US$). Shifts in livestock production towards mixed crop-livestock systems represent a resource- and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction.

Loading...
Thumbnail Image
Item

Large-scale bioenergy production: How to resolve sustainability trade-offs?

2018, Humpenöder, Florian, Popp, Alexander, Bodirsky, Benjamin Leon, Weindl, Isabelle, Biewald, Anne, Lotze-Campen, Hermann, Dietrich, Jan Philipp, Klein, David, Kreidenweis, Ulrich, Müller, Christoph, Rolinski, Susanne, Stevanovic, Miodrag

Large-scale 2nd generation bioenergy deployment is a key element of 1.5 °C and 2 °C transformation pathways. However, large-scale bioenergy production might have negative sustainability implications and thus may conflict with the Sustainable Development Goal (SDG) agenda. Here, we carry out a multi-criteria sustainability assessment of large-scale bioenergy crop production throughout the 21st century (300 EJ in 2100) using a global land-use model. Our analysis indicates that large-scale bioenergy production without complementary measures results in negative effects on the following sustainability indicators: deforestation, CO2 emissions from land-use change, nitrogen losses, unsustainable water withdrawals and food prices. One of our main findings is that single-sector environmental protection measures next to large-scale bioenergy production are prone to involve trade-offs among these sustainability indicators—at least in the absence of more efficient land or water resource use. For instance, if bioenergy production is accompanied by forest protection, deforestation and associated emissions (SDGs 13 and 15) decline substantially whereas food prices (SDG 2) increase. However, our study also shows that this trade-off strongly depends on the development of future food demand. In contrast to environmental protection measures, we find that agricultural intensification lowers some side-effects of bioenergy production substantially (SDGs 13 and 15) without generating new trade-offs—at least among the sustainability indicators considered here. Moreover, our results indicate that a combination of forest and water protection schemes, improved fertilization efficiency, and agricultural intensification would reduce the side-effects of bioenergy production most comprehensively. However, although our study includes more sustainability indicators than previous studies on bioenergy side-effects, our study represents only a small subset of all indicators relevant for the SDG agenda. Based on this, we argue that the development of policies for regulating externalities of large-scale bioenergy production should rely on broad sustainability assessments to discover potential trade-offs with the SDG agenda before implementation.