Search Results

Now showing 1 - 10 of 18
  • Item
    Bioenergy for climate change mitigation: Scale and sustainability
    (Oxford : Wiley-Blackwell, 2021) Calvin, Katherine; Cowie, Annette; Berndes, Göran; Arneth, Almut; Cherubini, Francesco; Portugal‐Pereira, Joana; Grassi, Giacomo; House, Jo; Johnson, Francis X.; Popp, Alexander; Rounsevell, Mark; Slade, Raphael; Smith, Pete
    Many global climate change mitigation pathways presented in IPCC assessment reports rely heavily on the deployment of bioenergy, often used in conjunction with carbon capture and storage. We review the literature on bioenergy use for climate change mitigation, including studies that use top-down integrated assessment models or bottom-up modelling, and studies that do not rely on modelling. We summarize the state of knowledge concerning potential co-benefits and adverse side effects of bioenergy systems and discuss limitations of modelling studies used to analyse consequences of bioenergy expansion. The implications of bioenergy supply on mitigation and other sustainability criteria are context dependent and influenced by feedstock, management regime, climatic region, scale of deployment and how bioenergy alters energy systems and land use. Depending on previous land use, widespread deployment of monoculture plantations may contribute to mitigation but can cause negative impacts across a range of other sustainability criteria. Strategic integration of new biomass supply systems into existing agriculture and forest landscapes may result in less mitigation but can contribute positively to other sustainability objectives. There is considerable variation in evaluations of how sustainability challenges evolve as the scale of bioenergy deployment increases, due to limitations of existing models, and uncertainty over the future context with respect to the many variables that influence alternative uses of biomass and land. Integrative policies, coordinated institutions and improved governance mechanisms to enhance co-benefits and minimize adverse side effects can reduce the risks of large-scale deployment of bioenergy. Further, conservation and efficiency measures for energy, land and biomass can support greater flexibility in achieving climate change mitigation and adaptation.
  • Item
    Estimating global land system impacts of timber plantations using MAgPIE 4.3.5
    (Katlenburg-Lindau : Copernicus, 2021) Mishra, Abhijeet; Humpenoeder, Florian; Dietrich, Jan Philipp; Bodirsky, Benjamin Leon; Sohngen, Brent; Reyer, Christopher P. O.; Lotze-Campen, Hermann; Popp, Alexander
    Out of 1150 Mha (million hectares) of forest designated primarily for production purposes in 2020, plantations accounted for 11 % (131 Mha) of this area and fulfilled more than 33 % of the global industrial roundwood demand. However, adding additional timber plantations to meet increasing timber demand intensifies competition for scarce land resources between different land uses such as food, feed, livestock and timber production. Despite the significance of plantations with respect to roundwood production, their importance in meeting the long-term timber demand and the implications of plantation expansion for overall land-use dynamics have not been studied in detail, in particular regarding the competition for land between agriculture and forestry in existing land-use models. This paper describes the extension of the modular, open-source land system Model of Agricultural Production and its Impact on the Environment (MAgPIE) using a detailed representation of forest land, timber production and timber demand dynamics. These extensions allow for a better understanding of the land-use dynamics (including competition for land) and the associated land-use change emissions of timber production. We show that the spatial cropland patterns differ when timber production is accounted for, indicating that timber plantations compete with cropland for the same scarce land resources. When plantations are established on cropland, it causes cropland expansion and deforestation elsewhere. Using the exogenous extrapolation of historical roundwood production from plantations, future timber demand and plantation rotation lengths, we model the future spatial expansion of forest plantations. As a result of increasing timber demand, we show a 177 % increase in plantation area by the end of the century (+171 Mha in 1995–2100). We also observe (in our model results) that the increasing demand for timber amplifies the scarcity of land, which is indicated by shifting agricultural land-use patterns and increasing yields from cropland compared with a case without forestry. Through the inclusion of new forest plantation and natural forest dynamics, our estimates of land-related CO2 emissions better match with observed data, in particular the gross land-use change emissions and carbon uptake (via regrowth), reflecting higher deforestation with the expansion of managed land and timber production as well as higher regrowth in natural forests and plantations.
  • Item
    Articulating the effect of food systems innovation on the Sustainable Development Goals
    (Amsterdam : Elsevier, 2021) Herrero, Mario; Thornton, Philip K.; Mason-D'Croz, Daniel; Palmer, Jeda; Bodirsky, Benjamin L.; Pradhan, Prajal; Barrett, Christopher B.; Benton, Tim G.; Hall, Andrew; Pikaar, Ilje; Bogard, Jessica R.; Bonnett, Graham D.; Bryan, Brett A.; Campbell, Bruce M.; Christensen, Svend; Clark, Michael; Fanzo, Jessica; Godde, Cecile M.; Jarvis, Andy; Loboguerrero, Ana Maria; Mathys, Alexander; McIntyre, C. Lynne; Naylor, Rosamond L.; Nelson, Rebecca; Obersteiner, Michael; Parodi, Alejandro; Popp, Alexander; Ricketts, Katie; Smith, Pete; Valin, Hugo; Vermeulen, Sonja J.; Vervoort, Joost; van Wijk, Mark; van Zanten, Hannah HE; West, Paul C.; Wood, Stephen A.; Rockström, Johan
    Food system innovations will be instrumental to achieving multiple Sustainable Development Goals (SDGs). However, major innovation breakthroughs can trigger profound and disruptive changes, leading to simultaneous and interlinked reconfigurations of multiple parts of the global food system. The emergence of new technologies or social solutions, therefore, have very different impact profiles, with favourable consequences for some SDGs and unintended adverse side-effects for others. Stand-alone innovations seldom achieve positive outcomes over multiple sustainability dimensions. Instead, they should be embedded as part of systemic changes that facilitate the implementation of the SDGs. Emerging trade-offs need to be intentionally addressed to achieve true sustainability, particularly those involving social aspects like inequality in its many forms, social justice, and strong institutions, which remain challenging. Trade-offs with undesirable consequences are manageable through the development of well planned transition pathways, careful monitoring of key indicators, and through the implementation of transparent science targets at the local level.
  • Item
    Combining ambitious climate policies with efforts to eradicate poverty
    ([London] : Nature Publishing Group UK, 2021) Soergel, Bjoern; Kriegler, Elmar; Bodirsky, Benjamin Leon; Bauer, Nico; Leimbach, Marian; Popp, Alexander
    Climate change threatens to undermine efforts to eradicate extreme poverty. However, climate policies could impose a financial burden on the global poor through increased energy and food prices. Here, we project poverty rates until 2050 and assess how they are influenced by mitigation policies consistent with the 1.5 °C target. A continuation of historical trends will leave 350 million people globally in extreme poverty by 2030. Without progressive redistribution, climate policies would push an additional 50 million people into poverty. However, redistributing the national carbon pricing revenues domestically as an equal-per-capita climate dividend compensates this policy side effect, even leading to a small net reduction of the global poverty headcount (−6 million). An additional international climate finance scheme enables a substantial poverty reduction globally and also in Sub-Saharan Africa. Combining national redistribution with international climate finance thus provides an important entry point to climate policy in developing countries.
  • Item
    Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement
    ([London] : Nature Publishing Group UK, 2022) Humpenöder, Florian; Popp, Alexander; Schleussner, Carl-Friedrich; Orlov, Anton; Windisch, Michael Gregory; Menke, Inga; Pongratz, Julia; Havermann, Felix; Thiery, Wim; Luo, Fei; v. Jeetze, Patrick; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Weindl, Isabelle; Lejeune, Quentin
    Transformation pathways for the land sector in line with the Paris Agreement depend on the assumption of globally implemented greenhouse gas (GHG) emission pricing, and in some cases also on inclusive socio-economic development and sustainable land-use practices. In such pathways, the majority of GHG emission reductions in the land system is expected to come from low- and middle-income countries, which currently account for a large share of emissions from agriculture, forestry and other land use (AFOLU). However, in low- and middle-income countries the economic, financial and institutional barriers for such transformative changes are high. Here, we show that if sustainable development in the land sector remained highly unequal and limited to high-income countries only, global AFOLU emissions would remain substantial throughout the 21st century. Our model-based projections highlight that overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement. While also a scenario purely based on either global GHG emission pricing or on inclusive socio-economic development would achieve the stringent emissions reductions required, only the latter ensures major co-benefits for other Sustainable Development Goals, especially in low- and middle-income regions.
  • Item
    Challenges in producing policy-relevant global scenarios of biodiversity and ecosystem services
    (Amsterdam : Elsevier, 2020) Rosa, Isabel M.D.; Purvis, Andy; Alkemade, Rob; Chaplin-Kramer, Rebecca; Ferrier, Simon; Guerra, Carlos A.; Hurtt, George; Kim, HyeJin; Leadley, Paul; Martins, Inês S.; Popp, Alexander; Schipper, Aafke M.; van Vuuren, Detlef; Pereira, Henrique M.
    Scenario-based modelling is a powerful tool to describe relationships between plausible trajectories of drivers, possible policy interventions, and impacts on biodiversity and ecosystem services. Model inter-comparisons are key in quantifying uncertainties and identifying avenues for model improvement but have been missing among the global biodiversity and ecosystem services modelling communities. The biodiversity and ecosystem services scenario-based inter-model comparison (BES-SIM) aims to fill this gap. We used global land-use and climate projections to simulate possible future impacts on terrestrial biodiversity and ecosystem services using a variety of models and a range of harmonized metrics. The goal of this paper is to reflect on the steps taken in BES-SIM, identify remaining methodological challenges, and suggest pathways for improvement. We identified five major groups of challenges; the need to: 1) better account for the role of nature in future human development storylines; 2) improve the representation of drivers in the scenarios by increasing the resolution (temporal, spatial and thematic) of land-use as key driver of biodiversity change and including additional relevant drivers; 3) explicitly integrate species- and trait-level biodiversity in ecosystem services models; 4) expand the coverage of the multiple dimensions of biodiversity and ecosystem services; and finally, 5) incorporate time-series or one-off historical data in the calibration and validation of biodiversity and ecosystem services models. Addressing these challenges would allow the development of more integrated global projections of biodiversity and ecosystem services, thereby improving their policy relevance in supporting the interlinked international conservation and sustainable development agendas. © 2019 The Authors
  • Item
    Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6
    (Katlenburg-Lindau : Copernicus, 2020) Hurtt, George C.; Chini, Louise; Sahajpal, Ritvik; Frolking, Steve; Bodirsky, Benjamin L.; Calvin, Katherine; Doelman, Jonathan C.; Fisk, Justin; Fujimori, Shinichiro; Klein Goldewijk, Kees; Hasegawa, Tomoko; Havlik, Peter; Heinimann, Andreas; Humpenöder, Florian; Jungclaus, Johan; Kaplan, Jed O.; Kennedy, Jennifer; Krisztin, Tamás; Lawrence, David; Lawrence, Peter; Ma, Lei; Mertz, Ole; Pongratz, Julia; Popp, Alexander; Poulter, Benjamin; Riahi, Keywan; Shevliakova, Elena; Stehfest, Elke; Thornton, Peter; Tubiello, Francesco N.; van Vuuren, Detlef P.; Zhang, Xin
    Human land use activities have resulted in large changes to the biogeochemical and biophysical properties of the Earth's surface, with consequences for climate and other ecosystem services. In the future, land use activities are likely to expand and/or intensify further to meet growing demands for food, fiber, and energy. As part of the World Climate Research Program Coupled Model Intercomparison Project (CMIP6), the international community has developed the next generation of advanced Earth system models (ESMs) to estimate the combined effects of human activities (e.g., land use and fossil fuel emissions) on the carbon–climate system. A new set of historical data based on the History of the Global Environment database (HYDE), and multiple alternative scenarios of the future (2015–2100) from Integrated Assessment Model (IAM) teams, is required as input for these models. With most ESM simulations for CMIP6 now completed, it is important to document the land use patterns used by those simulations. Here we present results from the Land-Use Harmonization 2 (LUH2) project, which smoothly connects updated historical reconstructions of land use with eight new future projections in the format required for ESMs. The harmonization strategy estimates the fractional land use patterns, underlying land use transitions, key agricultural management information, and resulting secondary lands annually, while minimizing the differences between the end of the historical reconstruction and IAM initial conditions and preserving changes depicted by the IAMs in the future. The new approach builds on a similar effort from CMIP5 and is now provided at higher resolution (0.25∘×0.25∘) over a longer time domain (850–2100, with extensions to 2300) with more detail (including multiple crop and pasture types and associated management practices) using more input datasets (including Landsat remote sensing data) and updated algorithms (wood harvest and shifting cultivation); it is assessed via a new diagnostic package. The new LUH2 products contain > 50 times the information content of the datasets used in CMIP5 and are designed to enable new and improved estimates of the combined effects of land use on the global carbon–climate system.
  • Item
    The ongoing nutrition transition thwarts long-term targets for food security, public health and environmental protection
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Bodirsky, Benjamin Leon; Dietrich, Jan Philipp; Martinelli, Eleonora; Stenstad, Antonia; Pradhan, Prajal; Gabrysch, Sabine; Mishra, Abhijeet; Weindl, Isabelle; Le Mouël, Chantal; Rolinski, Susanne; Baumstark, Lavinia; Wang, Xiaoxi; Waid, Jillian L.; Lotze-Campen, Hermann; Popp, Alexander
    The nutrition transition transforms food systems globally and shapes public health and environmental change. Here we provide a global forward-looking assessment of a continued nutrition transition and its interlinked symptoms in respect to food consumption. These symptoms range from underweight and unbalanced diets to obesity, food waste and environmental pressure. We find that by 2050, 45% (39–52%) of the world population will be overweight and 16% (13–20%) obese, compared to 29% and 9% in 2010 respectively. The prevalence of underweight approximately halves but absolute numbers stagnate at 0.4–0.7 billion. Aligned, dietary composition shifts towards animal-source foods and empty calories, while the consumption of vegetables, fruits and nuts increases insufficiently. Population growth, ageing, increasing body mass and more wasteful consumption patterns are jointly pushing global food demand from 30 to 45 (43–47) Exajoules. Our comprehensive open dataset and model provides the interfaces necessary for integrated studies of global health, food systems, and environmental change. Achieving zero hunger, healthy diets, and a food demand compatible with environmental boundaries necessitates a coordinated redirection of the nutrition transition. Reducing household waste, animal-source foods, and overweight could synergistically address multiple symptoms at once, while eliminating underweight would not substantially increase food demand.
  • Item
    Management-induced changes in soil organic carbon on global croplands
    (Katlenburg-Lindau [u.a.] : Copernicus, 2022) Karstens, Kristine; Bodirsky, Benjamin Leon; Dietrich, Jan Philipp; Dondini, Marta; Heinke, Jens; Kuhnert, Matthias; Müller, Christoph; Rolinski, Susanne; Smith, Pete; Weindl, Isabelle; Lotze-Campen, Hermann; Popp, Alexander
    Soil organic carbon (SOC), one of the largest terrestrial carbon (C) stocks on Earth, has been depleted by anthropogenic land cover change and agricultural management. However, the latter has so far not been well represented in global C stock assessments. While SOC models often simulate detailed biochemical processes that lead to the accumulation and decay of SOC, the management decisions driving these biophysical processes are still little investigated at the global scale. Here we develop a spatially explicit data set for agricultural management on cropland, considering crop production levels, residue returning rates, manure application, and the adoption of irrigation and tillage practices. We combine it with a reduced-complexity model based on the Intergovernmental Panel on Climate Change (IPCC) tier 2 method to create a half-degree resolution data set of SOC stocks and SOC stock changes for the first 30 cm of mineral soils. We estimate that, due to arable farming, soils have lost around 34.6 GtC relative to a counterfactual hypothetical natural state in 1975. Within the period 1975-2010, this SOC debt continued to expand by 5 GtC (0.14 GtCyr-1) to around 39.6 GtC. However, accounting for historical management led to 2.1 GtC fewer (0.06 GtCyr-1) emissions than under the assumption of constant management. We also find that management decisions have influenced the historical SOC trajectory most strongly by residue returning, indicating that SOC enhancement by biomass retention may be a promising negative emissions technique. The reduced-complexity SOC model may allow us to simulate management-induced SOC enhancement - also within computationally demanding integrated (land use) assessment modeling.
  • Item
    Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology
    (Katlenburg-Lindau [u.a.] : Copernicus, 2020) De Oliveira Garcia, Wagner; Amann, Thorben; Hartmann, Jens; Karstens, Kristine; Popp, Alexander; Boysen, Lena R.; Smith, Pete; Goll, Daniel
    Limiting global mean temperature changes to well below 2 °C likely requires a rapid and large-scale deployment of negative emission technologies (NETs). Assessments so far have shown a high potential of biomass-based terrestrial NETs, but only a few assessments have included effects of the commonly found nutrient-deficient soils on biomass production. Here, we investigate the deployment of enhanced weathering (EW) to supply nutrients to areas of afforestation-reforestation and naturally growing forests (AR) and bioenergy grasses (BG) that are deficient in phosphorus (P), besides the impacts on soil hydrology. Using stoichiometric ratios and biomass estimates from two established vegetation models, we calculated the nutrient demand of AR and BG. Insufficient geogenic P supply limits C storage in biomass. For a mean P demand by AR and a lowgeogenic-P-supply scenario, AR would sequester 119 Gt C in biomass; for a high-geogenic-P-supply and low-AR-Pdemand scenario, 187 Gt C would be sequestered in biomass; and for a low geogenic P supply and high AR P demand, only 92 GtC would be accumulated by biomass. An average amount of ∼ 150 Gt basalt powder applied for EW would be needed to close global P gaps and completely sequester projected amounts of 190 Gt C during the years 2006-2099 for the mean AR P demand scenario (2-362 Gt basalt powder for the low-AR-P-demand and for the high-AR-P-demand scenarios would be necessary, respectively). The average potential of carbon sequestration by EW until 2099 is ∼ 12 GtC (∼ 0:2-∼ 27 Gt C) for the specified scenarios (excluding additional carbon sequestration via alkalinity production). For BG, 8 kg basaltm2 a1 might, on average, replenish the exported potassium (K) and P by harvest. Using pedotransfer functions, we show that the impacts of basalt powder application on soil hydraulic conductivity and plant-Available water, to close predicted P gaps, would depend on basalt and soil texture, but in general the impacts are marginal. We show that EW could potentially close the projected P gaps of an AR scenario and nutrients exported by BG harvest, which would decrease or replace the use of industrial fertilizers. Besides that, EW ameliorates the soil's capacity to retain nutrients and soil pH and replenish soil nutrient pools. Lastly, EW application could improve plant-Available-water capacity depending on deployed amounts of rock powder - adding a new dimension to the coupling of land-based biomass NETs with EW. © 2020 Royal Society of Chemistry. All rights reserved.