Search Results

Now showing 1 - 2 of 2
  • Item
    In-vivo Raman spectroscopy: from basics to applications
    (Bellingham, Wash. : SPIE, 2018) Cordero, Eliana; Latka, Ines; Matthäus, Christian; Schie, Iwan W.; Popp, Jürgen
    For more than two decades, Raman spectroscopy has found widespread use in biological and medical applications. The instrumentation and the statistical evaluation procedures have matured, enabling the lengthy transition from ex-vivo demonstration to in-vivo examinations. This transition goes hand-in-hand with many technological developments and tightly bound requirements for a successful implementation in a clinical environment, which are often difficult to assess for novice scientists in the field. This review outlines the required instrumentation and instrumentation parameters, designs, and developments of fiber optic probes for the in-vivo applications in a clinical setting. It aims at providing an overview of contemporary technology and clinical trials and attempts to identify future developments necessary to bring the emerging technology to the clinical end users. A comprehensive overview of in-vivo applications of fiber optic Raman probes to characterize different tissue and disease types is also given.
  • Item
    Combination of high-resolution optical coherence tomography and raman spectroscopy for improved staging and grading in bladder cancer
    (Basel : MDPI, 2018) Bovenkamp, Daniela; Sentosa, Ryan; Rank, Elisabet; Erkkilä, Mikael T.; Placzek, Fabian; Püls, Jeremias; Drexler, Wolfgang; Leitgeb, Rainer Andreas; Garstka, Nathalie; Shariat, Shahrokh F.; Stiebing, Clara; Schie, Iwan W.; Popp, Jürgen; Andreana, Marco; Unterhuber, Angelika
    We present a combination of optical coherence tomography (OCT) and Raman spectroscopy (RS) for improved diagnosis and discrimination of different stages and grades of bladder cancer ex vivo by linking the complementary information provided by these two techniques. Bladder samples were obtained from biopsies dissected via transurethral resection of the bladder tumor (TURBT). As OCT provides structural information rapidly, it was used as a red-flag technology to scan the bladder wall for suspicious lesions with the ability to discriminate malignant tissue from healthy urothelium. Upon identification of degenerated tissue via OCT, RS was implemented to determine the molecular characteristics via point measurements at suspicious sites. Combining the complementary information of both modalities allows not only for staging, but also for differentiation of low-grade and high-grade cancer based on a multivariate statistical analysis. OCT was able to clearly differentiate between healthy and malignant tissue by tomogram inspection and achieved an accuracy of 71% in the staging of the tumor, from pTa to pT2, through texture analysis followed by k-nearest neighbor classification. RS yielded an accuracy of 93% in discriminating low-grade from high-grade lesions via principal component analysis followed by k-nearest neighbor classification. In this study, we show the potential of a multi-modal approach with OCT for fast pre-screening and staging of cancerous lesions followed by RS for enhanced discrimination of low-grade and high-grade bladder cancer in a non-destructive, label-free and non-invasive way.