Search Results

Now showing 1 - 10 of 16
  • Item
    Nonresonant Raman spectroscopy of isolated human retina samples complying with laser safety regulations for in vivo measurements
    (Bellingham, Wash. : SPIE, 2019) Stiebing, Clara; Schie, Iwan W.; Knorr, Florian; Schmitt, Michael; Keijzer, Nanda; Kleemann, Robert; Jahn, Izabella J.; Jahn, Martin; Kiliaan, Amanda J.; Ginner, Laurin; Lichtenegger, Antonia; Drexler, Wolfgang; Leitgeb, Rainer A.; Popp, Jürgen
    Retinal diseases, such as age-related macular degeneration, are leading causes of vision impairment, increasing in incidence worldwide due to an aging society. If diagnosed early, most cases could be prevented. In contrast to standard ophthalmic diagnostic tools, Raman spectroscopy can provide a comprehensive overview of the biochemical composition of the retina in a label-free manner. A proof of concept study of the applicability of nonresonant Raman spectroscopy for retinal investigations is presented. Raman imaging provides valuable insights into the molecular composition of an isolated ex vivo human retina sample by probing the entire molecular fingerprint, i.e., the lipid, protein, carotenoid, and nucleic acid content. The results are compared to morphological information obtained by optical coherence tomography of the sample. The challenges of in vivo Raman studies due to laser safety limitations and predefined optical parameters given by the eye itself are explored. An in-house built setup simulating the optical pathway in the human eye was developed and used to demonstrate that even under laser safety regulations and the above-mentioned optical restrictions, Raman spectra of isolated ex vivo human retinas can be recorded. The results strongly support that in vivo studies using nonresonant Raman spectroscopy are feasible and that these studies provide comprehensive molecular information of the human retina. © The Authors. Published by SPIE.
  • Item
    Shape-Memory Metallopolymers Based on Two Orthogonal Metal–Ligand Interactions
    (Weinheim : Wiley-VCH, 2021) Meurer, Josefine; Hniopek, Julian; Bätz, Thomas; Zechel, Stefan; Enke, Marcel; Vitz, Jürgen; Schmitt, Michael; Popp, Jürgen; Hager, Martin D.; Schubert, Ulrich S.
    A new shape-memory polymer is presented, in which both the stable phase as well as the switching unit consist of two different metal complexes. Suitable metal ions, which simultaneously form labile complexes with histidine and stable ones with terpyridine ligands, are identified via isothermal titration calorimetry (ITC) measurements. Different copolymers are synthesized, which contain butyl methacrylate as the main monomer and the metal-binding ligands in the side chains. Zn(TFMS)2 and NiCl2 are utilized for the dual crosslinking, resulting in the formation of metallopolymer networks. The switching temperature can simply be tuned by changing the composition as well as by the choice of the metal ion. Strain fixity rates (about 99%) and very high strain recovery rates (up to 95%) are achieved and the mechanism is revealed using different techniques such as Raman spectroscopy. © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH
  • Item
    Biochemical Characterization of Mouse Retina of an Alzheimer's Disease Model by Raman Spectroscopy
    (Washington, DC : ACS Publications, 2020) Stiebing, Clara; Jahn, Izabella J.; Schmitt, Michael; Keijzer, Nanda; Kleemann, Robert; Kiliaan, Amanda J.; Drexler, Wolfgang; Leitgeb, Rainer A.; Popp, Jürgen
    The presence of biomarkers characteristic for Alzheimer's disease in the retina is a controversial topic. Raman spectroscopy offers information on the biochemical composition of tissues. Thus, it could give valuable insight into the diagnostic value of retinal analysis. Within the present study, retinas of a double transgenic mouse model, that expresses a chimeric mouse/human amyloid precursor protein and a mutant form of human presenilin 1, and corresponding control group were subjected to ex vivo Raman imaging. The Raman data recorded on cross sections of whole eyes highlight the layered structure of the retina in a label-free manner. Based on the Raman information obtained from en face mounted retina samples, a discrimination between healthy and Alzheimer's disease retinal tissue can be done with an accuracy of 85.9%. For this a partial least squares-linear discriminant analysis was applied. Therefore, although no macromolecular changes in form of, i.e., amyloid beta plaques, can be noticed based on Raman spectroscopy, subtle biochemical changes happening in the retina could lead to Alzheimer's disease identification. ©
  • Item
    FLIM data analysis based on Laguerre polynomial decomposition and machine-learning
    (Bellingham, Wash. : SPIE, 2021) Guo, Shuxia; Silge, Anja; Bae, Hyeonsoo; Tolstik, Tatiana; Meyer, Tobias; Matziolis, Georg; Schmitt, Michael; Popp, Jürgen; Bocklitz, Thomas
    Significance: The potential of fluorescence lifetime imaging microscopy (FLIM) is recently being recognized, especially in biological studies. However, FLIM does not directly measure the lifetimes, rather it records the fluorescence decay traces. The lifetimes and/or abundances have to be estimated from these traces during the phase of data processing. To precisely estimate these parameters is challenging and requires a well-designed computer program. Conventionally employed methods, which are based on curve fitting, are computationally expensive and limited in performance especially for highly noisy FLIM data. The graphical analysis, while free of fit, requires calibration samples for a quantitative analysis. Aim: We propose to extract the lifetimes and abundances directly from the decay traces through machine learning (ML). Approach: The ML-based approach was verified with simulated testing data in which the lifetimes and abundances were known exactly. Thereafter, we compared its performance with the commercial software SPCImage based on datasets measured from biological samples on a time-correlated single photon counting system. We reconstructed the decay traces using the lifetime and abundance values estimated by ML and SPCImage methods and utilized the root-mean-squared-error (RMSE) as marker. Results: The RMSE, which represents the difference between the reconstructed and measured decay traces, was observed to be lower for ML than for SPCImage. In addition, we could demonstrate with a three-component analysis the high potential and flexibility of the ML method to deal with more than two lifetime components.
  • Item
    A polyyne toxin produced by an antagonistic bacterium blinds and lyses a Chlamydomonad alga
    (Washington, DC : National Acad. of Sciences, 2021) Hotter, Vivien; Zopf, David; Kim, Hak Joong; Silge, Anja; Schmitt, Michael; Aiyar, Prasad; Fleck, Johanna; Matthäus, Christian; Hniopek, Julian; Yan, Qing; Loper, Joyce; Sasso, Severin; Hertweck, Christian; Popp, Jürgen; Mittag, Maria
    Algae are key contributors to global carbon fixation and form the basis of many food webs. In nature, their growth is often supported or suppressed by microorganisms. The bacterium Pseudomonas protegens Pf-5 arrests the growth of the green unicellular alga Chlamydomonas reinhardtii, deflagellates the alga by the cyclic lipopeptide orfamide A, and alters its morphology [P. Aiyar et al., Nat. Commun. 8, 1756 (2017)]. Using a combination of Raman microspectroscopy, genome mining, and mutational analysis, we discovered a polyyne toxin, protegencin, which is secreted by P. protegens, penetrates the algal cells, and causes destruction of the carotenoids of their primitive visual system, the eyespot. Together with secreted orfamide A, protegencin thus prevents the phototactic behavior of C. reinhardtii. A mutant of P. protegens deficient in protegencin production does not affect growth or eyespot carotenoids of C. reinhardtii. Protegencin acts in a direct and destructive way by lysing and killing the algal cells. The toxic effect of protegencin is also observed in an eyeless mutant and with the colony-forming Chlorophyte alga Gonium pectorale. These data reveal a two-pronged molecular strategy involving a cyclic lipopeptide and a conjugated tetrayne used by bacteria to attack select Chlamydomonad algae. In conjunction with the bloom-forming activity of several chlorophytes and the presence of the protegencin gene cluster in over 50 different Pseudomonas genomes [A. J. Mullins et al., bioRxiv [Preprint] (2021). https://www.biorxiv.org/content/10.1101/2021.03.05.433886v1 (Accessed 17 April 2021)], these data are highly relevant to ecological interactions between Chlorophyte algae and Pseudomonadales bacteria.
  • Item
    Novel Biobased Self-Healing Ionomers Derived from Itaconic Acid Derivates
    (Weinheim : Wiley-VCH, 2021) Meurer, Josefine; Hniopek, Julian; Dahlke, Jan; Schmitt, Michael; Popp, Jürgen; Zechel, Stefan; Hager, Martin D.
    This article presents novel biobased ionomers featuring self-healing abilities. These smart materials are synthesized from itaconic acid derivates. Large quantities of itaconic acid can be produced from diverse biomass like corn, rice, and others. This study presents a comprehensive investigation of their thermal and mechanical properties via differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), and FT-Raman and FT-IR measurements as well as dynamic mechanic analysis. Within all these measurements, different kinds of structure-property relationships could be derived from these measurements. For example, the proportion of ionic groups enormously influences the self-healing efficiency. The investigation of the self-healing abilities reveals healing efficiencies up to 99% in 2 h at 90 °C for the itaconic acid based ionomer with the lowest ionic content. © 2020 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH
  • Item
    Bessel beam CARS of axially structured samples
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen
    We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern.
  • Item
    Photophysics of Anionic Bis(4H-imidazolato)CuI Complexes
    (Weinheim : Wiley-VCH, 2022) Seidler, Bianca; Tran, Jens H.; Hniopek, Julian; Traber, Philipp; Görls, Helmar; Gräfe, Stefanie; Schmitt, Michael; Popp, Jürgen; Schulz, Martin; Dietzek‐Ivanšić, Benjamin
    In this paper, the photophysical behavior of four panchromatically absorbing, homoleptic bis(4H-imidazolato)CuI complexes, with a systematic variation in the electron-withdrawing properties of the imidazolate ligand, were studied by wavelength-dependent time-resolved femtosecond transient absorption spectroscopy. Excitation at 400, 480, and 630 nm populates metal-to-ligand charge transfer, intraligand charge transfer, and mixed-character singlet states. The pump wavelength-dependent transient absorption data were analyzed by a recently established 2D correlation approach. Data analysis revealed that all excitation conditions yield similar excited-state dynamics. Key to the excited-state relaxation is fast, sub-picosecond pseudo-Jahn-Teller distortion, which is accompanied by the relocalization of electron density onto a single ligand from the initially delocalized state at Franck-Condon geometry. Subsequent intersystem crossing to the triplet manifold is followed by a sub-100 ps decay to the ground state. The fast, nonradiative decay is rationalized by the low triplet-state energy as found by DFT calculations, which suggest perspective treatment at the strong coupling limit of the energy gap law.
  • Item
    Multimodal Nonlinear Microscopy for Therapy Monitoring of Cold Atmospheric Plasma Treatment
    (Basel : MDPI, 2019) Meyer, Tobias; Bae, Hyeonsoo; Hasse, Sybille; Winter, Jörn; von Woedtke, Thomas; Schmitt, Michael; Weltmann, Klaus-Dieter; Popp, Jürgen
    Here we report on a non-linear spectroscopic method for visualization of cold atmospheric plasma (CAP)-induced changes in tissue for reaching a new quality level of CAP application in medicine via online monitoring of wound or cancer treatment. A combination of coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence lifetime imaging (2P-FLIM) and second harmonic generation (SHG) microscopy has been used for non-invasive and label-free detection of CAP-induced changes on human skin and mucosa samples. By correlation with histochemical staining, the observed local increase in fluorescence could be assigned to melanin. CARS and SHG prove the integrity of the tissue structure, visualize tissue morphology and composition. The influence of plasma effects by variation of plasma parameters e.g., duration of treatment, gas composition and plasma source has been evaluated. Overall quantitative spectroscopic markers could be identified for a direct monitoring of CAP-treated tissue areas, which is very important for translating CAPs into clinical routine.
  • Item
    Multimodal Molecular Imaging and Identification of Bacterial Toxins Causing Mushroom Soft Rot and Cavity Disease
    (Weinheim : Wiley-VCH, 2021) Dose, Benjamin; Thongkongkaew, Tawatchai; Zopf, David; Kim, Hak Joong; Bratovanov, Evgeni V.; García-Altares, María; Scherlach, Kirstin; Kumpfmüller, Jana; Ross, Claudia; Hermenau, Ron; Niehs, Sarah; Silge, Anja; Hniopek, Julian; Schmitt, Michael; Popp, Jürgen; Hertweck, Christian
    Soft rot disease of edible mushrooms leads to rapid degeneration of fungal tissue and thus severely affects farming productivity worldwide. The bacterial mushroom pathogen Burkholderia gladioli pv. agaricicola has been identified as the cause. Yet, little is known about the molecular basis of the infection, the spatial distribution and the biological role of antifungal agents and toxins involved in this infectious disease. We combine genome mining, metabolic profiling, MALDI-Imaging and UV Raman spectroscopy, to detect, identify and visualize a complex of chemical mediators and toxins produced by the pathogen during the infection process, including toxoflavin, caryoynencin, and sinapigladioside. Furthermore, targeted gene knockouts and in vitro assays link antifungal agents to prevalent symptoms of soft rot, mushroom browning, and impaired mycelium growth. Comparisons of related pathogenic, mutualistic and environmental Burkholderia spp. indicate that the arsenal of antifungal agents may have paved the way for ancestral bacteria to colonize niches where frequent, antagonistic interactions with fungi occur. Our findings not only demonstrate the power of label-free, in vivo detection of polyyne virulence factors by Raman imaging, but may also inspire new approaches to disease control. © 2021 The Authors. ChemBioChem published by Wiley-VCH GmbH