Search Results

Now showing 1 - 2 of 2
  • Item
    Photophysics of Anionic Bis(4H-imidazolato)CuI Complexes
    (Weinheim : Wiley-VCH, 2022) Seidler, Bianca; Tran, Jens H.; Hniopek, Julian; Traber, Philipp; Görls, Helmar; Gräfe, Stefanie; Schmitt, Michael; Popp, Jürgen; Schulz, Martin; Dietzek‐Ivanšić, Benjamin
    In this paper, the photophysical behavior of four panchromatically absorbing, homoleptic bis(4H-imidazolato)CuI complexes, with a systematic variation in the electron-withdrawing properties of the imidazolate ligand, were studied by wavelength-dependent time-resolved femtosecond transient absorption spectroscopy. Excitation at 400, 480, and 630 nm populates metal-to-ligand charge transfer, intraligand charge transfer, and mixed-character singlet states. The pump wavelength-dependent transient absorption data were analyzed by a recently established 2D correlation approach. Data analysis revealed that all excitation conditions yield similar excited-state dynamics. Key to the excited-state relaxation is fast, sub-picosecond pseudo-Jahn-Teller distortion, which is accompanied by the relocalization of electron density onto a single ligand from the initially delocalized state at Franck-Condon geometry. Subsequent intersystem crossing to the triplet manifold is followed by a sub-100 ps decay to the ground state. The fast, nonradiative decay is rationalized by the low triplet-state energy as found by DFT calculations, which suggest perspective treatment at the strong coupling limit of the energy gap law.
  • Item
    Label-free multimodal imaging of infected Galleria mellonella larvae
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2022) Quansah, Elsie; Ramoji, Anuradha; Thieme, Lara; Mirza, Kamran; Goering, Bianca; Makarewicz, Oliwia; Heutelbeck, Astrid; Meyer-Zedler, Tobias; Pletz, Mathias W.; Schmitt, Michael; Popp, Jürgen
    Non-linear imaging modalities have enabled us to obtain unique morpho-chemical insights into the tissue architecture of various biological model organisms in a label-free manner. However, these imaging techniques have so far not been applied to analyze the Galleria mellonella infection model. This study utilizes for the first time the strength of multimodal imaging techniques to explore infection-related changes in the Galleria mellonella larvae due to massive E. faecalis bacterial infection. Multimodal imaging techniques such as fluorescent lifetime imaging (FLIM), coherent anti-Stokes Raman scattering (CARS), two-photon excited fluorescence (TPEF), and second harmonic generation (SHG) were implemented in conjunction with histological HE images to analyze infection-associated tissue damage. The changes in the larvae in response to the infection, such as melanization, vacuolization, nodule formation, and hemocyte infiltration as a defense mechanism of insects against microbial pathogens, were visualized after Enterococcus faecalis was administered. Furthermore, multimodal imaging served for the analysis of implant-associated biofilm infections by visualizing biofilm adherence on medical stainless steel and ePTFE implants within the larvae. Our results suggest that infection-related changes as well as the integrity of the tissue of G. mellonella larvae can be studied with high morphological and chemical contrast in a label-free manner.