Search Results

Now showing 1 - 5 of 5
  • Item
    Predictive Modeling of Antibiotic Susceptibility in E. Coli Strains Using the U-Net Network and One-Class Classification
    (New York, NY : IEEE, 2020) Ali, Nairveen; Kirchhoff, Johanna; Onoja, Patrick Igoche; Tannert, Astrid; Neugebauer, Ute; Popp, Jürgen; Bocklitz, Thomas
    The antibiotic resistance of bacterial pathogens has become one of the most serious global health issues due to misusing and overusing of antibiotics. Recently, different technologies were developed to determine bacteria susceptibility towards antibiotics; however, each of these technologies has its advantages and limitations in clinical applications. In this contribution, we aim to assess and automate the detection of bacterial susceptibilities towards three antibiotics; i.e. ciprofloxacin, cefotaxime and piperacillin using a combination of image processing and machine learning algorithms. Therein, microscopic images were collected from different E. coli strains, then the convolutional neural network U-Net was implemented to segment the areas showing bacteria. Subsequently, the encoder part of the trained U-Net was utilized as a feature extractor, and the U-Net bottleneck features were utilized to predict the antibiotic susceptibility of E. coli strains using a one-class support vector machine (OCSVM). This one-class model was always trained on images of untreated controls of each bacterial strain while the image labels of treated bacteria were predicted as control or non-control images. If an image of treated bacteria is predicted as control, we assume that these bacteria resist this antibiotic. In contrast, the sensitive bacteria show different morphology of the control bacteria; therefore, images collected from these treated bacteria are expected to be classified as non-control. Our results showed 83% area under the receiver operating characteristic (ROC) curve when OCSVM models were built using the U-Net bottleneck features of control bacteria images only. Additionally, the mean sensitivities of these one-class models are 91.67% and 86.61% for cefotaxime and piperacillin; respectively. The mean sensitivity for the prediction of ciprofloxacin is only 59.72% as the bacteria morphology was not fully detected by the proposed method.
  • Item
    The Bouguer-Beer-Lambert Law: Shining Light on the Obscure
    (Weinheim : Wiley-VCH Verl., 2020) Mayerhöfer, Thomas G.; Pahlow, Susanne; Popp, Jürgen
    The Beer-Lambert law is unquestionably the most important law in optical spectroscopy and indispensable for the qualitative and quantitative interpretation of spectroscopic data. As such, every spectroscopist should know its limits and potential pitfalls, arising from its application, by heart. It is the goal of this work to review these limits and pitfalls, as well as to provide solutions and explanations to guide the reader. This guidance will allow a deeper understanding of spectral features, which cannot be explained by the Beer-Lambert law, because they arise from electromagnetic effects/the wave nature of light. Those features include band shifts and intensity changes based exclusively upon optical conditions, i. e. the method chosen to record the spectra, the substrate and the form of the sample. As such, the review will be an essential tool towards a full understanding of optical spectra and their quantitative interpretation based not only on oscillator positions, but also on their strengths and damping constants.
  • Item
    Systematic evaluation of particle loss during handling in the percutaneous transluminal angioplasty for eight different drug-coated balloons
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Heinrich, Andreas; Engler, Martin S.; Güttler, Felix V.; Matthäus, Christian; Popp, Jürgen; Teichgräber, Ulf K.-M.
    Paclitaxel drug coated balloons (DCBs) should provide optimal drug transfer exclusively to the target tissue. The aim of this study was to evaluate the particle loss by handling during angioplasty. A robotic arm was developed for systematic and reproducible drug abrasion experiments. The contact force on eight different commercially available DCB types was gradually increased, and high-resolution microscopic images of the deflated and inflated balloons were recorded. Three types of DCBs were classified: no abrasion of the drug in both statuses (deflated and inflated), significant abrasion only in the inflated status, and significant abrasion in both statuses. Quantitative measurements via image processing confirmed the qualitative classification and showed changes of the drug area between 2.25 and 45.73% (13.28 ± 14.29%) in the deflated status, and between 1.66 and 40.41% (21.43 ± 16.48%) in the inflated status. The structures and compositions of the DCBs are different, some are significantly more susceptible to drug loss. Particle loss by handling during angioplasty leads to different paclitaxel doses in the target regions for same DCB types. Susceptibility to involuntary drug loss may cause side effects, such as varying effective paclitaxel doses, which may explain variations in studies regarding the therapeutic outcome.
  • Item
    Raman Signal Enhancement Tunable by Gold-Covered Porous Silicon Films with Different Morphology
    (Basel : MDPI, 2020) Agafilushkina, Svetlana N.; Žukovskaja, Olga; Dyakov, Sergey A.; Weber, Karina; Sivakov, Vladimir; Popp, Jürgen; Cialla-May, Dana; Osminkina, Liubov A.
    The ease of fabrication, large surface area, tunable pore size and morphology as well surface modification capabilities of a porous silicon (PSi) layer make it widely used for sensoric applications. The pore size of a PSi layer can be an important parameter when used as a matrix for creating surface-enhanced Raman scattering (SERS) surfaces. Here, we evaluated the SERS activity of PSi with pores ranging in size from meso to macro, the surface of which was coated with gold nanoparticles (Au NPs). We found that different pore diameters in the PSi layers provide different morphology of the gold coating, from an almost monolayer to 50 nm distance between nanoparticles. Methylene blue (MB) and 4-mercaptopyridine (4-MPy) were used to describe the SERS activity of obtained Au/PSi surfaces. The best Raman signal enhancement was shown when the internal diameter of torus-shaped Au NPs is around 35 nm. To understand the role of plasmonic resonances in the observed SERS spectrum, we performed electromagnetic simulations of Raman scattering intensity as a function of the internal diameter. The results of these simulations are consistent with the obtained experimental data
  • Item
    Wide Field Spectral Imaging with Shifted Excitation Raman Difference Spectroscopy Using the Nod and Shuffle Technique
    (Basel : MDPI, 2020) Korinth, Florian; Schmälzlin, Elmar; Stiebing, Clara; Urrutia, Tanya; Micheva, Genoveva; Sandin, Christer; Müller, André; Maiwald, Martin; Sumpf, Bernd; Krafft, Christoph; Tränkle, Günther; Roth, Martin M; Popp, Jürgen
    Wide field Raman imaging using the integral field spectroscopy approach was used as a fast, one shot imaging method for the simultaneous collection of all spectra composing a Raman image. For the suppression of autofluorescence and background signals such as room light, shifted excitation Raman difference spectroscopy (SERDS) was applied to remove background artifacts in Raman spectra. To reduce acquisition times in wide field SERDS imaging, we adapted the nod and shuffle technique from astrophysics and implemented it into a wide field SERDS imaging setup. In our adapted version, the nod corresponds to the change in excitation wavelength, whereas the shuffle corresponds to the shifting of charges up and down on a Charge-Coupled Device (CCD) chip synchronous to the change in excitation wavelength. We coupled this improved wide field SERDS imaging setup to diode lasers with 784.4/785.5 and 457.7/458.9 nm excitation and applied it to samples such as paracetamol and aspirin tablets, polystyrene and polymethyl methacrylate beads, as well as pork meat using multiple accumulations with acquisition times in the range of 50 to 200 ms. The results tackle two main challenges of SERDS imaging: gradual photobleaching changes the autofluorescence background, and multiple readouts of CCD detector prolong the acquisition time.