Search Results

Now showing 1 - 10 of 19
  • Item
    Surface-Enhanced Raman Spectroscopy to Characterize Different Fractions of Extracellular Vesicles from Control and Prostate Cancer Patients
    (Basel : MDPI, 2021) Osei, Eric Boateng; Paniushkina, Liliia; Wilhelm, Konrad; Popp, Jürgen; Nazarenko, Irina; Krafft, Christoph
    Extracellular vesicles (EVs) are membrane-enclosed structures ranging in size from about 60 to 800 nm that are released by the cells into the extracellular space; they have attracted interest as easily available biomarkers for cancer diagnostics. In this study, EVs from plasma of control and prostate cancer patients were fractionated by differential centrifugation at 5000× g, 12,000× g and 120,000× g. The remaining supernatants were purified by ultrafiltration to produce EV-depleted free-circulating (fc) fractions. Spontaneous Raman and surface-enhanced Raman spectroscopy (SERS) at 785 nm excitation using silver nanoparticles (AgNPs) were employed as label-free techniques to collect fingerprint spectra and identify the fractions that best discriminate between control and cancer patients. SERS spectra from 10 µL droplets showed an enhanced Raman signature of EV-enriched fractions that were much more intense for cancer patients than controls. The Raman spectra of dehydrated pellets of EV-enriched fractions without AgNPs were dominated by spectral contributions of proteins and showed variations in S-S stretch, tryptophan and protein secondary structure bands between control and cancer fractions. We conclude that the AgNPs-mediated SERS effect strongly enhances Raman bands in EV-enriched fractions, and the fractions, EV12 and EV120 provide the best separation of cancer and control patients by Raman and SERS spectra.
  • Item
    Fiber-based SORS-SERDS system and chemometrics for the diagnostics and therapy monitoring of psoriasis inflammatory disease in vivo
    (Washington, DC : Optica, 2021-1-28) Schleusener, Johannes; Guo, Shuxia; Darvin, Maxim E.; Thiede, Gisela; Chernavskaia, Olga; Knorr, Florian; Lademann, Jürgen; Popp, Jürgen; Bocklitz, Thomas W.
    Psoriasis is considered a widespread dermatological disease that can strongly affect the quality of life. Currently, the treatment is continued until the skin surface appears clinically healed. However, lesions appearing normal may contain modifications in deeper layers. To terminate the treatment too early can highly increase the risk of relapses. Therefore, techniques are needed for a better knowledge of the treatment process, especially to detect the lesion modifications in deeper layers. In this study, we developed a fiber-based SORS-SERDS system in combination with machine learning algorithms to non-invasively determine the treatment efficiency of psoriasis. The system was designed to acquire Raman spectra from three different depths into the skin, which provide rich information about the skin modifications in deeper layers. This way, it is expected to prevent the occurrence of relapses in case of a too short treatment. The method was verified with a study of 24 patients upon their two visits: the data is acquired at the beginning of a standard treatment (visit 1) and four months afterwards (visit 2). A mean sensitivity of ≥85% was achieved to distinguish psoriasis from normal skin at visit 1. At visit 2, where the patients were healed according to the clinical appearance, the mean sensitivity was ≈65%.
  • Item
    Shape-Memory Metallopolymers Based on Two Orthogonal Metal–Ligand Interactions
    (Weinheim : Wiley-VCH, 2021) Meurer, Josefine; Hniopek, Julian; Bätz, Thomas; Zechel, Stefan; Enke, Marcel; Vitz, Jürgen; Schmitt, Michael; Popp, Jürgen; Hager, Martin D.; Schubert, Ulrich S.
    A new shape-memory polymer is presented, in which both the stable phase as well as the switching unit consist of two different metal complexes. Suitable metal ions, which simultaneously form labile complexes with histidine and stable ones with terpyridine ligands, are identified via isothermal titration calorimetry (ITC) measurements. Different copolymers are synthesized, which contain butyl methacrylate as the main monomer and the metal-binding ligands in the side chains. Zn(TFMS)2 and NiCl2 are utilized for the dual crosslinking, resulting in the formation of metallopolymer networks. The switching temperature can simply be tuned by changing the composition as well as by the choice of the metal ion. Strain fixity rates (about 99%) and very high strain recovery rates (up to 95%) are achieved and the mechanism is revealed using different techniques such as Raman spectroscopy. © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH
  • Item
    Stealth Effect of Short Polyoxazolines in Graft Copolymers: Minor Changes of Backbone End Group Determine Liver Cell-Type Specificity
    (Washington, DC : ACS Publications, 2021) Muljajew, Irina; Huschke, Sophie; Ramoji, Anuradha; Cseresnyés, Zoltán; Hoeppener, Stephanie; Nischang, Ivo; Foo, Wanling; Popp, Jürgen; Figge, Marc Thilo; Weber, Christine; Bauer, Michael; Schubert, Ulrich S.; Press, Adrian T.
    Dye-loaded micelles of 10 nm diameter formed from amphiphilic graft copolymers composed of a hydrophobic poly(methyl methacrylate) backbone and hydrophilic poly(2-ethyl-2-oxazoline) side chains with a degree of polymerization of 15 were investigated concerning their cellular interaction and uptake in vitro as well as their interaction with local and circulating cells of the reticuloendothelial system in the liver by intravital microscopy. Despite the high molar mass of the individual macromolecules (Mn ≈ 20 kg mol-1), backbone end group modification by attachment of a hydrophilic anionic fluorescent probe strongly affected the in vivo performance. To understand these effects, the end group was additionally modified by the attachment of four methacrylic acid repeating units. Although various micelles appeared similar in dynamic light scattering and cryo-transmission electron microscopy, changes in the micelles were evident from principal component analysis of the Raman spectra. Whereas an efficient stealth effect was found for micelles formed from polymers with anionically charged or thiol end groups, a hydrophobic end group altered the micelles' structure sufficiently to adapt cell-type specificity and stealth properties in the liver. © 2021 The Authors. Published by American Chemical Society.
  • Item
    Isolation of bacteria from artificial bronchoalveolar lavage fluid using density gradient centrifugation and their accessibility by Raman spectroscopy
    (Berlin [u.a.] : Springer, 2021) Wichmann, Christina; Rösch, Petra; Popp, Jürgen
    Raman spectroscopy is an analytical method to identify medical samples of bacteria. Because Raman spectroscopy detects the biochemical properties of a cell, there are many factors that can influence and modify the Raman spectra of bacteria. One possible influence is a proper method for isolation of the bacteria. Medical samples in particular never occur in purified form, so a Raman-compatible isolation method is needed which does not affect the bacteria and thus the resulting spectra. In this study, we present a Raman-compatible method for isolation of bacteria from bronchoalveolar lavage (BAL) fluid using density gradient centrifugation. In addition to measuring the bacteria from a patient sample, the yield and the spectral influence of the isolation on the bacteria were investigated. Bacteria isolated from BAL fluid show additional peaks in comparison to pure culture bacteria, which can be attributed to components in the BAL sample. The isolation gradient itself has no effect on the spectra, and with a yield of 63% and 78%, the method is suitable for isolation of low concentrations of bacteria from a complex matrix. Graphical abstract.
  • Item
    Multimodal Molecular Imaging and Identification of Bacterial Toxins Causing Mushroom Soft Rot and Cavity Disease
    (Weinheim : Wiley-VCH, 2021) Dose, Benjamin; Thongkongkaew, Tawatchai; Zopf, David; Kim, Hak Joong; Bratovanov, Evgeni V.; García-Altares, María; Scherlach, Kirstin; Kumpfmüller, Jana; Ross, Claudia; Hermenau, Ron; Niehs, Sarah; Silge, Anja; Hniopek, Julian; Schmitt, Michael; Popp, Jürgen; Hertweck, Christian
    Soft rot disease of edible mushrooms leads to rapid degeneration of fungal tissue and thus severely affects farming productivity worldwide. The bacterial mushroom pathogen Burkholderia gladioli pv. agaricicola has been identified as the cause. Yet, little is known about the molecular basis of the infection, the spatial distribution and the biological role of antifungal agents and toxins involved in this infectious disease. We combine genome mining, metabolic profiling, MALDI-Imaging and UV Raman spectroscopy, to detect, identify and visualize a complex of chemical mediators and toxins produced by the pathogen during the infection process, including toxoflavin, caryoynencin, and sinapigladioside. Furthermore, targeted gene knockouts and in vitro assays link antifungal agents to prevalent symptoms of soft rot, mushroom browning, and impaired mycelium growth. Comparisons of related pathogenic, mutualistic and environmental Burkholderia spp. indicate that the arsenal of antifungal agents may have paved the way for ancestral bacteria to colonize niches where frequent, antagonistic interactions with fungi occur. Our findings not only demonstrate the power of label-free, in vivo detection of polyyne virulence factors by Raman imaging, but may also inspire new approaches to disease control. © 2021 The Authors. ChemBioChem published by Wiley-VCH GmbH
  • Item
    Novel Biobased Self-Healing Ionomers Derived from Itaconic Acid Derivates
    (Weinheim : Wiley-VCH, 2021) Meurer, Josefine; Hniopek, Julian; Dahlke, Jan; Schmitt, Michael; Popp, Jürgen; Zechel, Stefan; Hager, Martin D.
    This article presents novel biobased ionomers featuring self-healing abilities. These smart materials are synthesized from itaconic acid derivates. Large quantities of itaconic acid can be produced from diverse biomass like corn, rice, and others. This study presents a comprehensive investigation of their thermal and mechanical properties via differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), and FT-Raman and FT-IR measurements as well as dynamic mechanic analysis. Within all these measurements, different kinds of structure-property relationships could be derived from these measurements. For example, the proportion of ionic groups enormously influences the self-healing efficiency. The investigation of the self-healing abilities reveals healing efficiencies up to 99% in 2 h at 90 °C for the itaconic acid based ionomer with the lowest ionic content. © 2020 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH
  • Item
    Correlation of crystal violet biofilm test results of Staphylococcus aureus clinical isolates with Raman spectroscopic read-out
    (Chichester [u.a.] : Wiley, 2021) Ebert, Christina; Tuchscherr, Lorena; Unger, Nancy; Pöllath, Christine; Gladigau, Frederike; Popp, Jürgen; Löffler, Bettina; Neugebauer, Ute
    Biofilm-related infections occur quite frequently in hospital settings and require rapid diagnostic identification as they are recalcitrant to antibiotic therapy and make special treatment necessary. One of the standard microbiological in vitro tests is the crystal violet test. It indirectly determines the amount of biofilm by measuring the optical density (OD) of the crystal violet-stained biofilm matrix and cells. However, this test is quite time-consuming, as it requires bacterial cultivation up to several days. In this study, we correlate fast Raman spectroscopic read-out of clinical Staphylococcus aureus isolates from 47 patients with different disease background with their biofilm-forming characteristics. Included were low (OD < 10), medium (OD ≥ 10 and ≤20), and high (OD > 20) biofilm performers as determined by the crystal violet test. Raman spectroscopic analysis of the bacteria revealed most spectral differences between high and low biofilm performers in the fingerprint region between 750 and 1150 cm−1. Using partial least square regression (PLSR) analysis on the Raman spectra involving the three categories of biofilm formation, it was possible to obtain a slight linear correlation of the Raman spectra with the biofilm OD values. The PLSR loading coefficient highlighted spectral differences between high and low biofilm performers for Raman bands that represent nucleic acids, carbohydrates, and proteins. Our results point to a possible application of Raman spectroscopy as a fast prediction tool for biofilm formation of bacterial strains directly after isolation from the infected patient. This could help clinicians make timely and adapted therapeutic decision in future.
  • Item
    Surface enhanced Raman spectroscopy-based evaluation of the membrane protein composition of the organohalide-respiring Sulfurospirillum multivorans
    (Chichester [u.a.] : Wiley, 2021) Cialla-May, Dana; Gadkari, Jennifer; Winterfeld, Andreea; Hübner, Uwe; Weber, Karina; Diekert, Gabriele; Schubert, Torsten; Goris, Tobias; Popp, Jürgen
    Bacteria often employ different respiratory chains that comprise membrane proteins equipped with various cofactors. Monitoring the protein inventory that is present in the cells under a given cultivation condition is often difficult and time-consuming. One example of a metabolically versatile bacterium is the microaerophilic organohalide-respiring Sulfurospirillum multivorans. Here, we used surface enhanced Raman spectroscopy (SERS) to quickly identify the cofactors involved in the respiration of S. multivorans. We cultured the organism with either tetrachloroethene (perchloroethylene, PCE), fumarate, nitrate, or oxygen as electron acceptors. Because the corresponding terminal reductases of the four different respiratory chains harbor different cofactors, specific fingerprint signals in SERS were expected. Silver nanostructures fabricated by means of electron beam lithography were coated with the membrane fractions extracted from the four S. multivorans cultivations, and SERS spectra were recorded. In the case of S. multivorans cultivated with PCE, the recorded SERS spectra were dominated by Raman peaks specific for Vitamin B12. This is attributed to the high abundance of the PCE reductive dehalogenase (PceA), the key enzyme in PCE respiration. After cultivation with oxygen, fumarate, or nitrate, no Raman spectral features of B12 were found. © 2020 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons Ltd
  • Item
    Raman Stable Isotope Probing of Bacteria in Visible and Deep UV-Ranges
    (Basel : MDPI, 2021) Azemtsop Matanfack, Georgette; Pistiki, Aikaterini; Rösch, Petra; Popp, Jürgen
    Raman stable isotope probing (Raman-SIP) is an excellent technique that can be used to access the overall metabolism of microorganisms. Recent studies have mainly used an excitation wavelength in the visible range to characterize isotopically labeled bacteria. In this work, we used UV resonance Raman spectroscopy (UVRR) to evaluate the spectral red-shifts caused by the uptake of isotopes (13C, 15N, 2H(D) and 18O) in E. coli cells. Moreover, we present a new approach based on the extraction of labeled DNA in combination with UVRR to identify metabolically active cells. The proof-of-principle study on E. coli revealed heterogeneities in the Raman features of both the bacterial cells and the extracted DNA after labeling with 13C, 15N, and D. The wavelength of choice for studying 18O- and deuterium-labeled cells is 532 nm is, while 13C-labeled cells can be investigated with visible and deep UV wavelengths. However, 15N-labeled cells are best studied at the excitation wavelength of 244 nm since nucleic acids are in resonance at this wavelength. These results highlight the potential of the presented approach to identify active bacterial cells. This work can serve as a basis for the development of new techniques for the rapid and efficient detection of active bacteria cells without the need for a cultivation step.