Search Results

Now showing 1 - 4 of 4
  • Item
    Noise Sources and Requirements for Confocal Raman Spectrometers in Biosensor Applications
    (Basel : MDPI, 2021) Jahn, Izabella J.; Grjasnow, Alexej; John, Henry; Weber, Karina; Popp, Jürgen; Hauswald, Walter
    Raman spectroscopy probes the biochemical composition of samples in a non-destructive, non-invasive and label-free fashion yielding specific information on a molecular level. Nevertheless, the Raman effect is very weak. The detection of all inelastically scattered photons with highest efficiency is therefore crucial as well as the identification of all noise sources present in the system. Here we provide a study for performance comparison and assessment of different spectrometers for confocal Raman spectroscopy in biosensor applications. A low-cost, home-built Raman spectrometer with a complementary metal-oxide-semiconductor (CMOS) camera, a middle price-class mini charge-coupled device (CCD) Raman spectrometer and a laboratory grade confocal Raman system with a deeply cooled CCD detector are compared. It is often overlooked that the sample itself is the most important “optical” component in a Raman spectrometer and its properties contribute most significantly to the signal-to-noise ratio. For this purpose, different representative samples: a crystalline silicon wafer, a polypropylene sample and E. coli bacteria were measured under similar conditions using the three confocal Raman spectrometers. We show that biosensor applications do not in every case profit from the most expensive equipment. Finally, a small Raman database of three different bacteria species is set up with the middle price-class mini CCD Raman spectrometer in order to demonstrate the potential of a compact setup for pathogen discrimination.
  • Item
    Liquid-Core Microstructured Polymer Optical Fiber as Fiber-Enhanced Raman Spectroscopy Probe for Glucose Sensing
    (Washington, DC : OSA, 2020) Azkune, Mikel; Frosch, Timea; Arrospide, Eneko; Aldabaldetreku, Gotzon; Bikandi, Iñaki; Zubia, Joseba; Popp, Jürgen; Frosch, Torsten
    This work reports the development and application of two liquid-core microstructured polymer optical fibers (LC-mPOF) with different microstructure sizes. They are used in a fiber-enhanced Raman spectroscopy sensing platform, with the aim of detecting glucose in aqueous solutions in the clinically relevant range for sodium-glucose cotransporter 2 inhibitor therapy. The sensing platform is tested for low-concentration glucose solutions using each LC-mPOF. Results confirm that a significant enhancement of the Raman signal is achieved in comparison to conventional Raman spectroscopy. Additional measurements are carried out to obtain the valid measurement range, the resolution, and the limit of detection, showing that the LC-mPOF with 66-µm-diameter central hollow core has the highest potential for future clinical applications. Finally, preliminary tests successfully demonstrate glucose identification in urine. © 1983-2012 IEEE.
  • Item
    Wide Field Spectral Imaging with Shifted Excitation Raman Difference Spectroscopy Using the Nod and Shuffle Technique
    (Basel : MDPI, 2020) Korinth, Florian; Schmälzlin, Elmar; Stiebing, Clara; Urrutia, Tanya; Micheva, Genoveva; Sandin, Christer; Müller, André; Maiwald, Martin; Sumpf, Bernd; Krafft, Christoph; Tränkle, Günther; Roth, Martin M; Popp, Jürgen
    Wide field Raman imaging using the integral field spectroscopy approach was used as a fast, one shot imaging method for the simultaneous collection of all spectra composing a Raman image. For the suppression of autofluorescence and background signals such as room light, shifted excitation Raman difference spectroscopy (SERDS) was applied to remove background artifacts in Raman spectra. To reduce acquisition times in wide field SERDS imaging, we adapted the nod and shuffle technique from astrophysics and implemented it into a wide field SERDS imaging setup. In our adapted version, the nod corresponds to the change in excitation wavelength, whereas the shuffle corresponds to the shifting of charges up and down on a Charge-Coupled Device (CCD) chip synchronous to the change in excitation wavelength. We coupled this improved wide field SERDS imaging setup to diode lasers with 784.4/785.5 and 457.7/458.9 nm excitation and applied it to samples such as paracetamol and aspirin tablets, polystyrene and polymethyl methacrylate beads, as well as pork meat using multiple accumulations with acquisition times in the range of 50 to 200 ms. The results tackle two main challenges of SERDS imaging: gradual photobleaching changes the autofluorescence background, and multiple readouts of CCD detector prolong the acquisition time.
  • Item
    Raman Signal Enhancement Tunable by Gold-Covered Porous Silicon Films with Different Morphology
    (Basel : MDPI, 2020) Agafilushkina, Svetlana N.; Žukovskaja, Olga; Dyakov, Sergey A.; Weber, Karina; Sivakov, Vladimir; Popp, Jürgen; Cialla-May, Dana; Osminkina, Liubov A.
    The ease of fabrication, large surface area, tunable pore size and morphology as well surface modification capabilities of a porous silicon (PSi) layer make it widely used for sensoric applications. The pore size of a PSi layer can be an important parameter when used as a matrix for creating surface-enhanced Raman scattering (SERS) surfaces. Here, we evaluated the SERS activity of PSi with pores ranging in size from meso to macro, the surface of which was coated with gold nanoparticles (Au NPs). We found that different pore diameters in the PSi layers provide different morphology of the gold coating, from an almost monolayer to 50 nm distance between nanoparticles. Methylene blue (MB) and 4-mercaptopyridine (4-MPy) were used to describe the SERS activity of obtained Au/PSi surfaces. The best Raman signal enhancement was shown when the internal diameter of torus-shaped Au NPs is around 35 nm. To understand the role of plasmonic resonances in the observed SERS spectrum, we performed electromagnetic simulations of Raman scattering intensity as a function of the internal diameter. The results of these simulations are consistent with the obtained experimental data