Search Results

Now showing 1 - 4 of 4
  • Item
    Revealing the Chemical Composition of Birch Pollen Grains by Raman Spectroscopic Imaging
    (Basel : Molecular Diversity Preservation International (MDPI), 2022) Stiebing, Clara; Post, Nele; Schindler, Claudia; Göhrig, Bianca; Lux, Harald; Popp, Jürgen; Heutelbeck, Astrid; Schie, Iwan W.
    The investigation of the biochemical composition of pollen grains is of the utmost interest for several environmental aspects, such as their allergenic potential and their changes in growth conditions due to climatic factors. In order to fully understand the composition of pollen grains, not only is an in-depth analysis of their molecular components necessary but also spatial information of, e.g., the thickness of the outer shell, should be recorded. However, there is a lack of studies using molecular imaging methods for a spatially resolved biochemical composition on a single-grain level. In this study, Raman spectroscopy was implemented as an analytical tool to investigate birch pollen by imaging single pollen grains and analyzing their spectral profiles. The imaging modality allowed us to reveal the layered structure of pollen grains based on the biochemical information of the recorded Raman spectra. Seven different birch pollen species collected at two different locations in Germany were investigated and compared. Using chemometric algorithms such as hierarchical cluster analysis and multiple-curve resolution, several components of the grain wall, such as sporopollenin, as well as the inner core presenting high starch concentrations, were identified and quantified. Differences in the concentrations of, e.g., sporopollenin, lipids and proteins in the pollen species at the two different collection sites were found, and are discussed in connection with germination and other growth processes.
  • Item
    Vibrational Spectroscopic Investigation of Blood Plasma and Serum by Drop Coating Deposition for Clinical Application
    (Basel : Molecular Diversity Preservation International (MDPI), 2021) Huang, Jing; Ali, Nairveen; Quansah, Elsie; Guo, Shuxia; Noutsias, Michel; Meyer-Zedler, Tobias; Bocklitz, Thomas; Popp, Jürgen; Neugebauer, Ute; Ramoji, Anuradha
    In recent decades, vibrational spectroscopic methods such as Raman and FT-IR spectroscopy are widely applied to investigate plasma and serum samples. These methods are combined with drop coating deposition techniques to pre-concentrate the biomolecules in the dried droplet to improve the detected vibrational signal. However, most often encountered challenge is the inhomogeneous redistribution of biomolecules due to the coffee-ring effect. In this study, the variation in biomolecule distribution within the dried-sample droplet has been investigated using Raman and FT-IR spectroscopy and fluorescence lifetime imaging method. The plasma-sample from healthy donors were investigated to show the spectral differences between the inner and outer-ring region of the dried-sample droplet. Further, the preferred location of deposition of the most abundant protein albumin in the blood during the drying process of the plasma has been illustrated by using deuterated albumin. Subsequently, two patients with different cardiac-related diseases were investigated exemplarily to illustrate the variation in the pattern of plasma and serum biomolecule distribution during the drying process and its impact on patient-stratification. The study shows that a uniform sampling position of the droplet, both at the inner and the outer ring, is necessary for thorough clinical characterization of the patient’s plasma and serum sample using vibrational spectroscopy.
  • Item
    3-Step flow focusing enables multidirectional imaging of bioparticles for imaging flow cytometry
    (Cambridge : RSC, 2020) Kleiber, Andreas; Ramoji, Anuradha; Mayer, Günter; Neugebauer, Ute; Popp, Jürgen; Henkel, Thomas
    Multidirectional imaging flow cytometry (mIFC) extends conventional imaging flow cytometry (IFC) for the image-based measurement of 3D-geometrical features of particles. The innovative core is a flow rotation unit in which a vertical sample lamella is incrementally rotated by 90 degrees into a horizontal lamella. The required multidirectional views are generated by guiding all particles at a controllable shear flow position of the parabolic velocity profile of the capillary slit detection chamber. All particles pass the detection chamber in a two-dimensional sheet under controlled rotation while each particle is imaged multiple times. This generates new options for automated particle analysis. In an experimental application, we used our system for the accurate classification of 15 species of pollen based on 3D-morphological information. We demonstrate how the combination of multi directional imaging with advanced machine learning algorithms can improve the accuracy of automated bio-particle classification. As an additional benefit, we significantly decrease the number of false positives in the classification of foreign particles,i.e.those elements which do not belong to one of the trained classes by the 3D-extension of the classification algorithm. © The Royal Society of Chemistry 2020.
  • Item
    Using Raman spectroscopy in infection research
    (Heidelberg : Spektrum, 2022) Cialla-May, Dana; Rösch, Petra; Popp, Jürgen
    Raman spectroscopy allows to analyze bacteria and other microorganisms label and destruction free. With different Raman techniques either colonies on agar plates or small structures like single bacterial cells can be analyzed allowing for their identification as well as enabling 2D and 3D information of intracellular bacteria or biofilms. Using surface enhanced Raman spectroscopy (SERS) allows detecting and identifying viruses as well as antibiotics relevant in the treatment of infections.