Search Results

Now showing 1 - 2 of 2
  • Item
    Surface-Enhanced Raman Spectroscopy to Characterize Different Fractions of Extracellular Vesicles from Control and Prostate Cancer Patients
    (Basel : MDPI, 2021) Osei, Eric Boateng; Paniushkina, Liliia; Wilhelm, Konrad; Popp, Jürgen; Nazarenko, Irina; Krafft, Christoph
    Extracellular vesicles (EVs) are membrane-enclosed structures ranging in size from about 60 to 800 nm that are released by the cells into the extracellular space; they have attracted interest as easily available biomarkers for cancer diagnostics. In this study, EVs from plasma of control and prostate cancer patients were fractionated by differential centrifugation at 5000× g, 12,000× g and 120,000× g. The remaining supernatants were purified by ultrafiltration to produce EV-depleted free-circulating (fc) fractions. Spontaneous Raman and surface-enhanced Raman spectroscopy (SERS) at 785 nm excitation using silver nanoparticles (AgNPs) were employed as label-free techniques to collect fingerprint spectra and identify the fractions that best discriminate between control and cancer patients. SERS spectra from 10 µL droplets showed an enhanced Raman signature of EV-enriched fractions that were much more intense for cancer patients than controls. The Raman spectra of dehydrated pellets of EV-enriched fractions without AgNPs were dominated by spectral contributions of proteins and showed variations in S-S stretch, tryptophan and protein secondary structure bands between control and cancer fractions. We conclude that the AgNPs-mediated SERS effect strongly enhances Raman bands in EV-enriched fractions, and the fractions, EV12 and EV120 provide the best separation of cancer and control patients by Raman and SERS spectra.
  • Item
    Fiber-array-based Raman hyperspectral imaging for simultaneous chemical selective monitoring of particle size and shape of active ingredients in analgesic tablets
    (Basel : MDPI, 2019) Frosch, Timea; Wyrwich, Elisabeth; Yan, Di; Popp, Jürgen; Frosch, Torsten
    The particle shape, size and distribution of active pharmaceutical ingredients (API) are relevant quality indicators of pharmaceutical tablets due to their high impact on the manufacturing process. Furthermore, the bioavailability of the APIs from the dosage form depends largely on these characteristics. Routinely, particle size and shape are only analyzed in the powder form, without regard to the effect of the formulation procedure on the particle characteristics. The monitoring of these parameters improves the understanding of the process; therefore, higher quality and better control over the biopharmaceutical profile can be ensured. A new fiber-array-based Raman hyperspectral imaging technique is presented for direct simultaneous in-situ monitoring of three different active pharmaceutical ingredients- acetylsalicylic acid, acetaminophen and caffeine- in analgesic tablets. This novel method enables a chemically selective, noninvasive assessment of the distribution of the active ingredients down to 1 µm spatial resolution. The occurrence of spherical and needle-like particles, as well as agglomerations and the respective particle size ranges, were rapidly determined for two commercially available analgesic tablet types. Subtle differences were observed in comparison between these two tablets. Higher amounts of acetaminophen were visible, more needle-shaped and bigger acetylsalicylic acid particles, and a higher incidence of bigger agglomerations were found in one of the analgesic tablets.