Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Modified bibenzimidazole ligands as spectator ligands in photoactive molecular functional Ru-polypyridine units? Implications from spectroscopy

2014, Meyer-Ilse, J., Bauroth, S., Bräutigam, M., Schmitt, M., Popp, J., Beckert, R., Rockstroh, N., Pilz, T.D., Monczak, K., Heinemann, F.W., Rau, S., Dietzek, B.

The photophysical properties of Ruthenium-bipyridine complexes bearing a bibenzimidazole ligand were investigated. The nitrogens on the bibenzimidazole-ligand were protected, by adding either a phenylene group or a 1,2-ethandiyl group, to remove the photophysical dependence of the complex on the protonation state of the bibenzimidazole ligand. This protection results in the bibenzimidazole ligand contributing to the MLCT transition, which is experimentally evidenced by (resonance) Raman scattering in concert with DFT calculations for a detailed mode assignment in the (resonance) Raman spectra.

Loading...
Thumbnail Image
Item

Monitoring the chemistry of self-healing by vibrational spectroscopy - Current state and perspectives

2014, Zedler, L., Hager, M.D., Schubert, U.S., Harrington, M.J., Schmitt, M., Popp, J., Dietzek, B.

Self-healing materials are designed to heal damage caused by, for example, mechanical stress or aging such that the original functionality of the material is at least partially restored. Thus, self-healing materials hold great promise for prolonging the lifetime of machines, particularly those in remote locations, as well as in increasing the reliability and safety associated with functional materials in, for example, aeronautics applications. Recent material science applications of self-healing have led to an increased interest in the field and, consequently, the spectroscopic characterization of a wide range of self-healing materials with respect to their mechanical properties such as stress and strain resistance and elasticity was in the focus. However, the characterization of the chemical mechanisms underlying various self-healing processes locally within the damaged region of materials still presents a major challenge. This requires experimental techniques that work non-destructively in situ and are capable of revealing the chemical composition of a sample with sufficient spatial and temporal resolution without disturbing the healing process. Along these lines, vibrational spectroscopy and, in particular Raman spectroscopy, holds great promise, largely due to the high spatial resolution in the order of several hundreds of nanometers that can be obtained. This article aims to summarize the state of the art and prospective of Raman spectroscopy to contribute significant insights to the research on self-healing materials - in particular focusing on polymer and biopolymer materials.

Loading...
Thumbnail Image
Item

Multimodal nonlinear imaging of atherosclerotic plaques differentiation of triglyceride and cholesterol deposits

2014, Matthäus, C., Cicchi, R., Meyer, T., Lattermann, A., Schmitt, M., Romeike, B.F.M., Krafft, C., Dietzek, B., Brehm, B.R., Pavone, F.S., Popp, J.

Cardiovascular diseases in general and atherothrombosis as the most common of its individual disease entities is the leading cause of death in the developed countries. Therefore, visualization and characterization of inner arterial plaque composition is of vital diagnostic interest, especially for the early recognition of vulnerable plaques. Established clinical techniques provide valuable morphological information but cannot deliver information about the chemical composition of individual plaques. Therefore, spectroscopic imaging techniques have recently drawn considerable attention. Based on the spectroscopic properties of the individual plaque components, as for instance different types of lipids, the composition of atherosclerotic plaques can be analyzed qualitatively as well as quantitatively. Here, we compare the feasibility of multimodal nonlinear imaging combining two-photon fluorescence (TPF), coherent anti-Stokes Raman scattering (CARS) and second-harmonic generation (SHG) microscopy to contrast composition and morphology of lipid deposits against the surrounding matrix of connective tissue with diffraction limited spatial resolution. In this contribution, the spatial distribution of major constituents of the arterial wall and atherosclerotic plaques like elastin, collagen, triglycerides and cholesterol can be simultaneously visualized by a combination of nonlinear imaging methods, providing a powerful label-free complement to standard histopathological methods with great potential for in vivo application.

Loading...
Thumbnail Image
Item

Evaluation of colloids and activation agents for determination of melamine using UV-SERS

2012, Kämmer, E., Dörfer, T., Csáki, A., Schumacher, W., Da Costa Filho, P.A., Tarcea, N., Fritzsche, W., Rösch, P., Schmitt, M., Popp, J.

UV-SERS measurements offer a great potential for environmental or food (detection of food contaminats) analytics. Here, the UV-SERS enhancement potential of various kinds of metal colloids, such as Pd, Pt, Au, Ag, Au-Ag core-shell, and Ag-Au core-shell with different shapes and sizes, were studied using melamine as a test molecule. The influence of different activation (KF, KCl, KBr, K 2SO 4) agents onto the SERS activity of the nanomaterials was investigated, showing that the combination of a particular nanoparticle with a special activation agent is extremely crucial for the observed SERS enhancement. In particular, the size dependence of spherical nanoparticles of one particular metal on the activator has been exploited. By doing so, it could be shown that the SERS enhancement increases or decreases for increasing or decreasing size of a nanoparticle, respectively. Overall, the presented results demonstrate the necessity to adjust the nanoparticle size and the activation agent for different experiments in order to achieve the best possible UV-SERS results.