Search Results

Now showing 1 - 10 of 13
  • Item
    Raman imaging to study structural and chemical features of the dentin enamel junction
    (London [u.a.] : Institute of Physics, 2015) Alebrahim, M.A.; Krafft, C.; Popp, J.; El-Khateeb, Mohammad Y.
    The structure and chemical features of the human dentin enamel junction (DEJ) were characterized using Raman spectroscopic imaging. Slices were prepared from 10 German, and 10 Turkish teeth. Raman images were collected at 785 nm excitation and the average Raman spectra were calculated for analysis. Univariate and multivariate spectral analysis were applied for investigation. Raman images were obtained based on the intensity ratios of CH at 1450 cm-1 (matrix) to phosphate at 960 cm-1 (mineral), and carbonate to phosphate (1070/960) ratios. Different algorithms (HCA, K-means cluster and VCA) also used to study the DEJ. The obtained results showed that the width of DEJ is about 5 pm related to univariate method while it varies from 6 to 12 μm based on multivariate spectral technique. Both spectral analyses showed increasing in carbonate content inside the DEJ compared to the dentin, and the amide I (collagen) peak in dentin spectra is higher than DEJ spectra peak.
  • Item
    Modified bibenzimidazole ligands as spectator ligands in photoactive molecular functional Ru-polypyridine units? Implications from spectroscopy
    (Cambridge : RSC, 2014) Meyer-Ilse, J.; Bauroth, S.; Bräutigam, M.; Schmitt, M.; Popp, J.; Beckert, R.; Rockstroh, N.; Pilz, T.D.; Monczak, K.; Heinemann, F.W.; Rau, S.; Dietzek, B.
    The photophysical properties of Ruthenium-bipyridine complexes bearing a bibenzimidazole ligand were investigated. The nitrogens on the bibenzimidazole-ligand were protected, by adding either a phenylene group or a 1,2-ethandiyl group, to remove the photophysical dependence of the complex on the protonation state of the bibenzimidazole ligand. This protection results in the bibenzimidazole ligand contributing to the MLCT transition, which is experimentally evidenced by (resonance) Raman scattering in concert with DFT calculations for a detailed mode assignment in the (resonance) Raman spectra.
  • Item
    Multimodal nonlinear imaging of atherosclerotic plaques differentiation of triglyceride and cholesterol deposits
    (Singapore [u.a.] : World Scientific Publishing, 2014) Matthäus, C.; Cicchi, R.; Meyer, T.; Lattermann, A.; Schmitt, M.; Romeike, B.F.M.; Krafft, C.; Dietzek, B.; Brehm, B.R.; Pavone, F.S.; Popp, J.
    Cardiovascular diseases in general and atherothrombosis as the most common of its individual disease entities is the leading cause of death in the developed countries. Therefore, visualization and characterization of inner arterial plaque composition is of vital diagnostic interest, especially for the early recognition of vulnerable plaques. Established clinical techniques provide valuable morphological information but cannot deliver information about the chemical composition of individual plaques. Therefore, spectroscopic imaging techniques have recently drawn considerable attention. Based on the spectroscopic properties of the individual plaque components, as for instance different types of lipids, the composition of atherosclerotic plaques can be analyzed qualitatively as well as quantitatively. Here, we compare the feasibility of multimodal nonlinear imaging combining two-photon fluorescence (TPF), coherent anti-Stokes Raman scattering (CARS) and second-harmonic generation (SHG) microscopy to contrast composition and morphology of lipid deposits against the surrounding matrix of connective tissue with diffraction limited spatial resolution. In this contribution, the spatial distribution of major constituents of the arterial wall and atherosclerotic plaques like elastin, collagen, triglycerides and cholesterol can be simultaneously visualized by a combination of nonlinear imaging methods, providing a powerful label-free complement to standard histopathological methods with great potential for in vivo application.
  • Item
    Evaluation of colloids and activation agents for determination of melamine using UV-SERS
    (Washington, DC : American Chemical Society, 2012) Kämmer, E.; Dörfer, T.; Csáki, A.; Schumacher, W.; Da Costa Filho, P.A.; Tarcea, N.; Fritzsche, W.; Rösch, P.; Schmitt, M.; Popp, J.
    UV-SERS measurements offer a great potential for environmental or food (detection of food contaminats) analytics. Here, the UV-SERS enhancement potential of various kinds of metal colloids, such as Pd, Pt, Au, Ag, Au-Ag core-shell, and Ag-Au core-shell with different shapes and sizes, were studied using melamine as a test molecule. The influence of different activation (KF, KCl, KBr, K 2SO 4) agents onto the SERS activity of the nanomaterials was investigated, showing that the combination of a particular nanoparticle with a special activation agent is extremely crucial for the observed SERS enhancement. In particular, the size dependence of spherical nanoparticles of one particular metal on the activator has been exploited. By doing so, it could be shown that the SERS enhancement increases or decreases for increasing or decreasing size of a nanoparticle, respectively. Overall, the presented results demonstrate the necessity to adjust the nanoparticle size and the activation agent for different experiments in order to achieve the best possible UV-SERS results.
  • Item
    Light-triggered CO release from nanoporous non-wovens
    (London [u.a.] : Royal Society of Chemistry, 2014) Bohlender, C.; Gläser, S.; Klein, M.; Weisser, J.; Thein, S.; Neugebauer, U.; Popp, J.; Wyrwa, R.; Schiller, A.
    The water insoluble and photoactive CO releasing molecule dimanganese decacarbonyl (CORM-1) has been non-covalently embedded into poly(l-lactide-co-d/ l-lactide) fibers via electrospinning to enable bioavailability and water accessibility of CORM-1. SEM images of the resulting hybrid non-wovens reveal a nanoporous fiber morphology. Slight CO release from the CORM-1 in the electrospinning process induces nanoporosity. IR spectra show the same set of carbonyl bands for the CORM-1 precursor and the non-woven. When the material was exposed to light (365-480 nm), CO release from the incorporated CORM-1 was measured via heterogeneous myoglobin assay, a portable CO electrode and an IR gas cuvette. The CO release rate was wavelength dependent. Irradiation at 365 nm resulted in four times faster release than at 480 nm. 3.4 μmol of CO per mg non-woven can be generated. Mouse fibroblast 3T3 cells were used to show that the hybrid material is non-toxic in the darkness and strongly photocytotoxic when light is applied.
  • Item
    Monitoring the chemistry of self-healing by vibrational spectroscopy - Current state and perspectives
    (Amsterdam [u.a.] : Elsevier, 2014) Zedler, L.; Hager, M.D.; Schubert, U.S.; Harrington, M.J.; Schmitt, M.; Popp, J.; Dietzek, B.
    Self-healing materials are designed to heal damage caused by, for example, mechanical stress or aging such that the original functionality of the material is at least partially restored. Thus, self-healing materials hold great promise for prolonging the lifetime of machines, particularly those in remote locations, as well as in increasing the reliability and safety associated with functional materials in, for example, aeronautics applications. Recent material science applications of self-healing have led to an increased interest in the field and, consequently, the spectroscopic characterization of a wide range of self-healing materials with respect to their mechanical properties such as stress and strain resistance and elasticity was in the focus. However, the characterization of the chemical mechanisms underlying various self-healing processes locally within the damaged region of materials still presents a major challenge. This requires experimental techniques that work non-destructively in situ and are capable of revealing the chemical composition of a sample with sufficient spatial and temporal resolution without disturbing the healing process. Along these lines, vibrational spectroscopy and, in particular Raman spectroscopy, holds great promise, largely due to the high spatial resolution in the order of several hundreds of nanometers that can be obtained. This article aims to summarize the state of the art and prospective of Raman spectroscopy to contribute significant insights to the research on self-healing materials - in particular focusing on polymer and biopolymer materials.
  • Item
    The morphology of silver nanoparticles prepared by enzyme-induced reduction
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2012) Schneidewind, H.; Schüler, T.; Strelau, K.K.; Weber, K.; Cialla, D.; Diegel, M.; Mattheis, R.; Berger, A.; Möller, R.; Popp, J.
    Silver nanoparticles were synthesized by an enzyme-induced growth process on solid substrates. In order to customize the enzymatically grown nanoparticles (EGNP) for analytical applications in biomolecular research, a detailed study was carried out concerning the time evolution of the formation of the silver nanoparticles, their morphology, and their chemical composition. Therefore, silvernanoparticle films of different densities were investigated by using scanning as well as transmission electron microscopy to examine their structure. Cross sections of silver nanoparticles, prepared for analysis by transmission electron microscopy were additionally studied by energy-dispersive X-ray spectroscopy in order to probe their chemical composition. The surface coverage of substrates with silver nanoparticles and the maximum particle height were determined by Rutherford backscattering spectroscopy. Variations in the silver-nanoparticle films depending on the conditions during synthesis were observed. After an initial growth state the silver nanoparticles exhibit the so-called desert-rose or nanoflower-like structure. This complex nanoparticle structure is in clear contrast to the auto-catalytically grown spherical particles, which maintain their overall geometrical appearance while increasing their diameter. It is shown, that the desert-rose-like silver nanoparticles consist of single-crystalline plates of pure silver. The surface-enhanced Raman spectroscopic (SERS) activity of the EGNP structures is promising due to the exceptionally rough surface structure of the silver nanoparticles. SERS measurements of the vitamin riboflavin incubated on the silver nanoparticles are shown as an exemplary application for quantitative analysis.
  • Item
    Raman-spectroscopy based cell identification on a microhole array chip
    (Basel : MDPI AG, 2014) Neugebauer, U.; Kurz, C.; Bocklitz, T.; Berger, T.; Velten, T.; Clement, J.H.; Krafft, C.; Popp, J.
    Circulating tumor cells (CTCs) from blood of cancer patients are valuable prognostic markers and enable monitoring responses to therapy. The extremely low number of CTCs makes their isolation and characterization a major technological challenge. For label-free cell identification a novel combination of Raman spectroscopy with a microhole array platform is described that is expected to support high-throughput and multiplex analyses. Raman spectra were registered from regularly arranged cells on the chip with low background noise from the silicon nitride chip membrane. A classification model was trained to distinguish leukocytes from myeloblasts (OCI-AML3) and breast cancer cells (MCF-7 and BT-20). The model was validated by Raman spectra of a mixed cell population. The high spectral quality, low destructivity and high classification accuracy suggests that this approach is promising for Raman activated cell sorting.
  • Item
    Liver Dysfunction and Phosphatidylinositol-3-Kinase Signalling in Early Sepsis: Experimental Studies in Rodent Models of Peritonitis
    (San Francisco, CA : Public Library of Science, 2012) Recknagel, P.; Gonnert, F.A.; Westermann, M.; Lambeck, S.; Lupp, A.; Rudiger, A.; Dyson, A.; Carré, J.E.; Kortgen, A.; Krafft, C.; Popp, J.; Sponholz, C.; Fuhrmann, V.; Hilger, I.; Claus, R.A.; Riedemann, N.C.; Wetzker, R.; Singer, M.; Trauner, M.; Bauer, M.
    Background: Hepatic dysfunction and jaundice are traditionally viewed as late features of sepsis and portend poor outcomes. We hypothesized that changes in liver function occur early in the onset of sepsis, yet pass undetected by standard laboratory tests. Methods and Findings: In a long-term rat model of faecal peritonitis, biotransformation and hepatobiliary transport were impaired, depending on subsequent disease severity, as early as 6 h after peritoneal contamination. Phosphatidylinositol-3-kinase (PI3K) signalling was simultaneously induced at this time point. At 15 h there was hepatocellular accumulation of bilirubin, bile acids, and xenobiotics, with disturbed bile acid conjugation and drug metabolism. Cholestasis was preceded by disruption of the bile acid and organic anion transport machinery at the canalicular pole. Inhibitors of PI3K partially prevented cytokine-induced loss of villi in cultured HepG2 cells. Notably, mice lacking the PI3Kγ gene were protected against cholestasis and impaired bile acid conjugation. This was partially confirmed by an increase in plasma bile acids (e.g., chenodeoxycholic acid [CDCA] and taurodeoxycholic acid [TDCA]) observed in 48 patients on the day severe sepsis was diagnosed; unlike bilirubin (area under the receiver-operating curve: 0.59), these bile acids predicted 28-d mortality with high sensitivity and specificity (area under the receiver-operating curve: CDCA: 0.77; TDCA: 0.72; CDCA+TDCA: 0.87). Conclusions: Liver dysfunction is an early and commonplace event in the rat model of sepsis studied here; PI3K signalling seems to play a crucial role. All aspects of hepatic biotransformation are affected, with severity relating to subsequent prognosis. Detected changes significantly precede conventional markers and are reflected by early alterations in plasma bile acids. These observations carry important implications for the diagnosis of liver dysfunction and pharmacotherapy in the critically ill. Further clinical work is necessary to extend these concepts into clinical practice. Please see later in the article for the Editors' Summary.
  • Item
    HD DVD substrates for surface enhanced Raman spectroscopy analysis: fabrication, theoretical predictions and practical performance
    (London : RSC Publishing, 2016) Radu, A.I.; Ussembayev, Y.Y.; Jahn, M.; Schubert, U.S.; Weber, K.; Cialla-May, D.; Hoeppener, S.; Heisterkamp, A.; Popp, J.
    Commercial HD DVDs provide a characteristic structure of encoding pits which were utilized to fabricate cost efficiently large area SERS substrates for chemical analysis. The study targets the simulation of the plasmonic structure of the substrates and presents an easily accessible fabrication process to obtain highly sensitive SERS active substrates. The theoretical simulation predicted the formation of supermodes under optimized illumination conditions, which were verified experimentally. First tests of the developed SERS substrates demonstrated their excellent potential for detecting vitamin A and pro-vitamin A at low concentration levels.