Search Results

Now showing 1 - 10 of 19
  • Item
    Novel Biobased Self-Healing Ionomers Derived from Itaconic Acid Derivates
    (Weinheim : Wiley-VCH, 2021) Meurer, Josefine; Hniopek, Julian; Dahlke, Jan; Schmitt, Michael; Popp, Jürgen; Zechel, Stefan; Hager, Martin D.
    This article presents novel biobased ionomers featuring self-healing abilities. These smart materials are synthesized from itaconic acid derivates. Large quantities of itaconic acid can be produced from diverse biomass like corn, rice, and others. This study presents a comprehensive investigation of their thermal and mechanical properties via differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), and FT-Raman and FT-IR measurements as well as dynamic mechanic analysis. Within all these measurements, different kinds of structure-property relationships could be derived from these measurements. For example, the proportion of ionic groups enormously influences the self-healing efficiency. The investigation of the self-healing abilities reveals healing efficiencies up to 99% in 2 h at 90 °C for the itaconic acid based ionomer with the lowest ionic content. © 2020 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH
  • Item
    Biochemical Characterization of Mouse Retina of an Alzheimer's Disease Model by Raman Spectroscopy
    (Washington, DC : ACS Publications, 2020) Stiebing, Clara; Jahn, Izabella J.; Schmitt, Michael; Keijzer, Nanda; Kleemann, Robert; Kiliaan, Amanda J.; Drexler, Wolfgang; Leitgeb, Rainer A.; Popp, Jürgen
    The presence of biomarkers characteristic for Alzheimer's disease in the retina is a controversial topic. Raman spectroscopy offers information on the biochemical composition of tissues. Thus, it could give valuable insight into the diagnostic value of retinal analysis. Within the present study, retinas of a double transgenic mouse model, that expresses a chimeric mouse/human amyloid precursor protein and a mutant form of human presenilin 1, and corresponding control group were subjected to ex vivo Raman imaging. The Raman data recorded on cross sections of whole eyes highlight the layered structure of the retina in a label-free manner. Based on the Raman information obtained from en face mounted retina samples, a discrimination between healthy and Alzheimer's disease retinal tissue can be done with an accuracy of 85.9%. For this a partial least squares-linear discriminant analysis was applied. Therefore, although no macromolecular changes in form of, i.e., amyloid beta plaques, can be noticed based on Raman spectroscopy, subtle biochemical changes happening in the retina could lead to Alzheimer's disease identification. ©
  • Item
    Multimodal Nonlinear Microscopy for Therapy Monitoring of Cold Atmospheric Plasma Treatment
    (Basel : MDPI, 2019) Meyer, Tobias; Bae, Hyeonsoo; Hasse, Sybille; Winter, Jörn; von Woedtke, Thomas; Schmitt, Michael; Weltmann, Klaus-Dieter; Popp, Jürgen
    Here we report on a non-linear spectroscopic method for visualization of cold atmospheric plasma (CAP)-induced changes in tissue for reaching a new quality level of CAP application in medicine via online monitoring of wound or cancer treatment. A combination of coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence lifetime imaging (2P-FLIM) and second harmonic generation (SHG) microscopy has been used for non-invasive and label-free detection of CAP-induced changes on human skin and mucosa samples. By correlation with histochemical staining, the observed local increase in fluorescence could be assigned to melanin. CARS and SHG prove the integrity of the tissue structure, visualize tissue morphology and composition. The influence of plasma effects by variation of plasma parameters e.g., duration of treatment, gas composition and plasma source has been evaluated. Overall quantitative spectroscopic markers could be identified for a direct monitoring of CAP-treated tissue areas, which is very important for translating CAPs into clinical routine.
  • Item
    Raman imaging of changes in the polysaccharides distribution in the cell wall during apple fruit development and senescence
    (Berlin ; Heidelberg : Springer, 2016) Szymańska-Chargot, Monika; Chylińska, Monika; Pieczywek, Piotr M.; Rösch, Petra; Schmitt, Michael; Popp, Jürgen; Zdunek, Artur
    Main conclusion Du ring on-tree ripening, the pectin distribution changed from polydispersed in cell wall to cumulated in cell wall corners. During apple storage, the pectin distribution returned to evenly dispersed along the cell wall. The plant cell wall influences the texture properties of fruit tissue for example apples become softer during ripening and postharvest storage. This softening process is believed to be mainly connected with changes in the cell wall composition due to polysaccharides undergoing an enzymatic degradation. These changes in polysaccharides are currently mainly investigated via chemical analysis or monoclonal labeling. Here, we propose the application of Raman microscopy for evaluating the changes in the polysaccharide distribution in the cell wall of apples during both ripening and postharvest storage. The apples were harvested 1 month and 2 weeks before optimal harvest date as well as at the optimal harvest date. The apples harvested at optimal harvest date were stored for 3 months. The Raman maps, as well as the chemical analysis were obtained for each harvest date and after 1, 2 and 3 months of storage, respectively. The analysis of the Raman maps showed that the pectins in the middle lamella and primary cell wall undergo a degradation. The changes in cellulose and hemicellulose were less pronounced. These findings were confirmed by the chemical analysis results. During development changes of pectins from a polydispersed form in the cell walls to a cumulated form in cell wall corners could be observed. In contrast after 3 months of apple storage we could observe an substantial pectin decrease. The obtained results demonstrate that Raman chemical imaging might be a very useful tool for a first identification of compositional changes in plant tissue during their development. The great advantage Raman microspectroscopy offers is the simultaneous localization and identification of polysaccharides within the cell wall and plant tissue.
  • Item
    A polyyne toxin produced by an antagonistic bacterium blinds and lyses a Chlamydomonad alga
    (Washington, DC : National Acad. of Sciences, 2021) Hotter, Vivien; Zopf, David; Kim, Hak Joong; Silge, Anja; Schmitt, Michael; Aiyar, Prasad; Fleck, Johanna; Matthäus, Christian; Hniopek, Julian; Yan, Qing; Loper, Joyce; Sasso, Severin; Hertweck, Christian; Popp, Jürgen; Mittag, Maria
    Algae are key contributors to global carbon fixation and form the basis of many food webs. In nature, their growth is often supported or suppressed by microorganisms. The bacterium Pseudomonas protegens Pf-5 arrests the growth of the green unicellular alga Chlamydomonas reinhardtii, deflagellates the alga by the cyclic lipopeptide orfamide A, and alters its morphology [P. Aiyar et al., Nat. Commun. 8, 1756 (2017)]. Using a combination of Raman microspectroscopy, genome mining, and mutational analysis, we discovered a polyyne toxin, protegencin, which is secreted by P. protegens, penetrates the algal cells, and causes destruction of the carotenoids of their primitive visual system, the eyespot. Together with secreted orfamide A, protegencin thus prevents the phototactic behavior of C. reinhardtii. A mutant of P. protegens deficient in protegencin production does not affect growth or eyespot carotenoids of C. reinhardtii. Protegencin acts in a direct and destructive way by lysing and killing the algal cells. The toxic effect of protegencin is also observed in an eyeless mutant and with the colony-forming Chlorophyte alga Gonium pectorale. These data reveal a two-pronged molecular strategy involving a cyclic lipopeptide and a conjugated tetrayne used by bacteria to attack select Chlamydomonad algae. In conjunction with the bloom-forming activity of several chlorophytes and the presence of the protegencin gene cluster in over 50 different Pseudomonas genomes [A. J. Mullins et al., bioRxiv [Preprint] (2021). https://www.biorxiv.org/content/10.1101/2021.03.05.433886v1 (Accessed 17 April 2021)], these data are highly relevant to ecological interactions between Chlorophyte algae and Pseudomonadales bacteria.
  • Item
    Beyond endoscopic assessment in inflammatory bowel disease: real-time histology of disease activity by non-linear multimodal imaging
    (London : Nature Publishing Group, 2016) Chernavskaia, Olga; Heuke, Sandro; Vieth, Michael; Friedrich, Oliver; Schürmann, Sebastian; Atreya, Raja; Stallmach, Andreas; Neurath, Markus F.; Waldner, Maximilian; Petersen, Iver; Schmitt, Michael; Bocklitz, Thomas; Popp, Jürgen
    Assessing disease activity is a prerequisite for an adequate treatment of inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis. In addition to endoscopic mucosal healing, histologic remission poses a promising end-point of IBD therapy. However, evaluating histological remission harbors the risk for complications due to the acquisition of biopsies and results in a delay of diagnosis because of tissue processing procedures. In this regard, non-linear multimodal imaging techniques might serve as an unparalleled technique that allows the real-time evaluation of microscopic IBD activity in the endoscopy unit. In this study, tissue sections were investigated using the non-linear multimodal microscopy combination of coherent anti-Stokes Raman scattering (CARS), two-photon excited auto fluorescence (TPEF) and second-harmonic generation (SHG). After the measurement a gold-standard assessment of histological indexes was carried out based on a conventional H&E stain. Subsequently, various geometry and intensity related features were extracted from the multimodal images. An optimized feature set was utilized to predict histological index levels based on a linear classifier. Based on the automated prediction, the diagnosis time interval is decreased. Therefore, non-linear multimodal imaging may provide a real-time diagnosis of IBD activity suited to assist clinical decision making within the endoscopy unit.
  • Item
    Nonresonant Raman spectroscopy of isolated human retina samples complying with laser safety regulations for in vivo measurements
    (Bellingham, Wash. : SPIE, 2019) Stiebing, Clara; Schie, Iwan W.; Knorr, Florian; Schmitt, Michael; Keijzer, Nanda; Kleemann, Robert; Jahn, Izabella J.; Jahn, Martin; Kiliaan, Amanda J.; Ginner, Laurin; Lichtenegger, Antonia; Drexler, Wolfgang; Leitgeb, Rainer A.; Popp, Jürgen
    Retinal diseases, such as age-related macular degeneration, are leading causes of vision impairment, increasing in incidence worldwide due to an aging society. If diagnosed early, most cases could be prevented. In contrast to standard ophthalmic diagnostic tools, Raman spectroscopy can provide a comprehensive overview of the biochemical composition of the retina in a label-free manner. A proof of concept study of the applicability of nonresonant Raman spectroscopy for retinal investigations is presented. Raman imaging provides valuable insights into the molecular composition of an isolated ex vivo human retina sample by probing the entire molecular fingerprint, i.e., the lipid, protein, carotenoid, and nucleic acid content. The results are compared to morphological information obtained by optical coherence tomography of the sample. The challenges of in vivo Raman studies due to laser safety limitations and predefined optical parameters given by the eye itself are explored. An in-house built setup simulating the optical pathway in the human eye was developed and used to demonstrate that even under laser safety regulations and the above-mentioned optical restrictions, Raman spectra of isolated ex vivo human retinas can be recorded. The results strongly support that in vivo studies using nonresonant Raman spectroscopy are feasible and that these studies provide comprehensive molecular information of the human retina. © The Authors. Published by SPIE.
  • Item
    Shape-Memory Metallopolymers Based on Two Orthogonal Metal–Ligand Interactions
    (Weinheim : Wiley-VCH, 2021) Meurer, Josefine; Hniopek, Julian; Bätz, Thomas; Zechel, Stefan; Enke, Marcel; Vitz, Jürgen; Schmitt, Michael; Popp, Jürgen; Hager, Martin D.; Schubert, Ulrich S.
    A new shape-memory polymer is presented, in which both the stable phase as well as the switching unit consist of two different metal complexes. Suitable metal ions, which simultaneously form labile complexes with histidine and stable ones with terpyridine ligands, are identified via isothermal titration calorimetry (ITC) measurements. Different copolymers are synthesized, which contain butyl methacrylate as the main monomer and the metal-binding ligands in the side chains. Zn(TFMS)2 and NiCl2 are utilized for the dual crosslinking, resulting in the formation of metallopolymer networks. The switching temperature can simply be tuned by changing the composition as well as by the choice of the metal ion. Strain fixity rates (about 99%) and very high strain recovery rates (up to 95%) are achieved and the mechanism is revealed using different techniques such as Raman spectroscopy. © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH
  • Item
    Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool
    (London : BioMed Central, 2016) Bocklitz, Thomas W.; Salah, Firas Subhi; Vogler, Nadine; Heuke, Sandro; Chernavskaia, Olga; Schmidt, Carsten; Waldner, Maximilian J.; Greten, Florian R.; Bräuer, Rolf; Schmitt, Michael; Stallmach, Andreas; Petersen, Iver; Popp, Jürgen
    Due to the steadily increasing number of cancer patients worldwide the early diagnosis and treatment of cancer is a major field of research. The diagnosis of cancer is mostly performed by an experienced pathologist via the visual inspection of histo-pathological stained tissue sections. To save valuable time, low quality cryosections are frequently analyzed with diagnostic accuracies that are below those of high quality embedded tissue sections. Thus, alternative means have to be found that enable for fast and accurate diagnosis as the basis of following clinical decision making.
  • Item
    A rigid coherent anti-Stokes Raman scattering endoscope with high resolution and a large field of view
    (College Park : American Institute of Physics, 2018) Zirak, P.; Matz, Gregor; Messerschmidt, Bernhard; Meyer, Tobias; Schmitt, Michael; Popp, Jürgen; Uckermann, Ortrud; Galli, R.; Kirsch, Matthias; Winterhalder, M.J.; Zumbusch, A.
    Nonlinear optical endoscopy is an attractive technique for biomedical imaging since it promises to give access to high resolution imaging in vivo. Among the various techniques used for endoscopic contrast generation, coherent anti-Stokes Raman scattering (CARS) is especially interesting. CARS endoscopy allows molecule specific imaging of unlabeled samples. In this contribution, we describe the design, implementation, and experimental characterization of a rigid, compact CARS endoscope with a spatial resolution of 750 nm over a field of view of roughly 250 μm. Omission of the relay optics and use of a gradient index lens specifically designed for this application allow one to realize these specifications in an endoscopic unit which is 2.2 mm wide over a length of 187 mm, making clinical applications during surgical interventions possible. Multimodal use of the endoscope is demonstrated with images of samples with neurosurgical relevance.Nonlinear optical endoscopy is an attractive technique for biomedical imaging since it promises to give access to high resolution imaging in vivo. Among the various techniques used for endoscopic contrast generation, coherent anti-Stokes Raman scattering (CARS) is especially interesting. CARS endoscopy allows molecule specific imaging of unlabeled samples. In this contribution, we describe the design, implementation, and experimental characterization of a rigid, compact CARS endoscope with a spatial resolution of 750 nm over a field of view of roughly 250 μm. Omission of the relay optics and use of a gradient index lens specifically designed for this application allow one to realize these specifications in an endoscopic unit which is 2.2 mm wide over a length of 187 mm, making clinical applications during surgical interventions possible. Multimodal use of the endoscope is demonstrated with images of samples with neurosurgical relevance.