Search Results

Now showing 1 - 10 of 24
  • Item
    New perspectives for viability studies with high-content analysis Raman spectroscopy (HCA-RS)
    (Berlin : Nature Publishing, 2019) Mondol, Abdullah S.; Töpfer, Natalie; Rüger, Jan; Neugebauer, Ute; Popp, Jürgen; Schie, Iwan W.
    Raman spectroscopy has been widely used in clinical and molecular biological studies, providing high chemical specificity without the necessity of labels and with little-to-no sample preparation. However, currently performed Raman-based studies of eukaryotic cells are still very laborious and time-consuming, resulting in a low number of sampled cells and questionable statistical validations. Furthermore, the approach requires a trained specialist to perform and analyze the experiments, rendering the method less attractive for most laboratories. In this work, we present a new high-content analysis Raman spectroscopy (HCA-RS) platform that overcomes the current challenges of conventional Raman spectroscopy implementations. HCA-RS allows sampling of a large number of cells under different physiological conditions without any user interaction. The performance of the approach is successfully demonstrated by the development of a Raman-based cell viability assay, i.e., the effect of doxorubicin concentration on monocytic THP-1 cells. A statistical model, principal component analysis combined with support vector machine (PCA-SVM), was found to successfully predict the percentage of viable cells in a mixed population and is in good agreement to results obtained by a standard cell viability assay. This study demonstrates the potential of Raman spectroscopy as a standard high-throughput tool for clinical and biological applications.
  • Item
    Nanoboomerang-based inverse metasurfaces - a promising path towards ultrathin photonic devices for transmission operation
    (College Park : American Institute of Physics, 2017) Zeisberger, Matthias; Schneidewind, Henrik; Hübner, Uwe; Popp, Jürgen; Schmidt, Markus A.
    Metasurfaces have revolutionized photonics due to their ability to shape phase fronts as requested and to tune beam directionality using nanoscale metallic or dielectric scatterers. Here we reveal inverse metasurfaces showing superior properties compared to their positive counterparts if transmission mode operation is considered. The key advantage of such slot-type metasurfaces is the strong reduction of light in the parallel-polarization state, making the crossed-polarization, being essential for metasurface operation, dominant and highly visible. In the experiment, we show an up to four times improvement in polarization extinction for the individual metasurface element geometry consisting of deep subwavelength nanoboomerangs with feature sizes of the order of 100 nm. As confirmed by simulations, strong plasmonic hybridization yields two spectrally separated plasmonic resonances, ultimately allowing for the desired phase and scattering engineering in transmission. Due to the design flexibility of inverse metasurfaces, a large number of highly integrated ultra-flat photonic elements can be envisioned, examples of which include monolithic lenses for telecommunications and spectroscopy, beam shaper or generator for particle trapping or acceleration or sophisticated polarization control for microscopy.
  • Item
    PHONA - photonische Nanomaterialien : Schlussbericht ; Laufzeit des Vorhabens: 01.12.2009-30.11.2014
    (Hannover : Technische Informationsbibliothek (TIB), 2014) Hübner, Uwe; Popp, Jürgen
    [no abstract available]
  • Item
    Multimodal Nonlinear Microscopy for Therapy Monitoring of Cold Atmospheric Plasma Treatment
    (Basel : MDPI, 2019) Meyer, Tobias; Bae, Hyeonsoo; Hasse, Sybille; Winter, Jörn; von Woedtke, Thomas; Schmitt, Michael; Weltmann, Klaus-Dieter; Popp, Jürgen
    Here we report on a non-linear spectroscopic method for visualization of cold atmospheric plasma (CAP)-induced changes in tissue for reaching a new quality level of CAP application in medicine via online monitoring of wound or cancer treatment. A combination of coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence lifetime imaging (2P-FLIM) and second harmonic generation (SHG) microscopy has been used for non-invasive and label-free detection of CAP-induced changes on human skin and mucosa samples. By correlation with histochemical staining, the observed local increase in fluorescence could be assigned to melanin. CARS and SHG prove the integrity of the tissue structure, visualize tissue morphology and composition. The influence of plasma effects by variation of plasma parameters e.g., duration of treatment, gas composition and plasma source has been evaluated. Overall quantitative spectroscopic markers could be identified for a direct monitoring of CAP-treated tissue areas, which is very important for translating CAPs into clinical routine.
  • Item
    Noise Sources and Requirements for Confocal Raman Spectrometers in Biosensor Applications
    (Basel : MDPI, 2021) Jahn, Izabella J.; Grjasnow, Alexej; John, Henry; Weber, Karina; Popp, Jürgen; Hauswald, Walter
    Raman spectroscopy probes the biochemical composition of samples in a non-destructive, non-invasive and label-free fashion yielding specific information on a molecular level. Nevertheless, the Raman effect is very weak. The detection of all inelastically scattered photons with highest efficiency is therefore crucial as well as the identification of all noise sources present in the system. Here we provide a study for performance comparison and assessment of different spectrometers for confocal Raman spectroscopy in biosensor applications. A low-cost, home-built Raman spectrometer with a complementary metal-oxide-semiconductor (CMOS) camera, a middle price-class mini charge-coupled device (CCD) Raman spectrometer and a laboratory grade confocal Raman system with a deeply cooled CCD detector are compared. It is often overlooked that the sample itself is the most important “optical” component in a Raman spectrometer and its properties contribute most significantly to the signal-to-noise ratio. For this purpose, different representative samples: a crystalline silicon wafer, a polypropylene sample and E. coli bacteria were measured under similar conditions using the three confocal Raman spectrometers. We show that biosensor applications do not in every case profit from the most expensive equipment. Finally, a small Raman database of three different bacteria species is set up with the middle price-class mini CCD Raman spectrometer in order to demonstrate the potential of a compact setup for pathogen discrimination.
  • Item
    Label-free CARS microscopy through a multimode fibre endoscope
    (Washington D.C. : Optical Society of America, 2019) Trägårdh, Johanna; Pikálek, Tomáš; Šerý, Mojmír; Meyer, Tobias; Popp, Jürgen; Čižmár, Tomáš
    Multimode fibres have recently been employed as high-resolution ultra-thin endoscopes, capable of imaging biological structures deep inside tissue in vivo. Here, we extend this technique to label-free non-linear microscopy with chemical contrast using coherent anti-Stokes Raman scattering (CARS) through a multimode fibre endoscope, which opens up new avenues for instant and in-situ diagnosis of potentially malignant tissue. We use a commercial 125 µm diameter, 0.29 NA GRIN fibre, and wavefront shaping on an SLM is used to create foci that are scanned behind the fibre facet across the sample. The chemical selectivity is demonstrated by imaging 2 µm polystyrene and 2.5 µm PMMA beads with per pixel integration time as low as 1 ms for epi-detection.Multimode fibres have recently been employed as high-resolution ultra-thin endoscopes, capable of imaging biological structures deep inside tissue in vivo. Here, we extend this technique to label-free non-linear microscopy with chemical contrast using coherent anti-Stokes Raman scattering (CARS) through a multimode fibre endoscope, which opens up new avenues for instant and in-situ diagnosis of potentially malignant tissue. We use a commercial 125 µm diameter, 0.29 NA GRIN fibre, and wavefront shaping on an SLM is used to create foci that are scanned behind the fibre facet across the sample. The chemical selectivity is demonstrated by imaging 2 µm polystyrene and 2.5 µm PMMA beads with per pixel integration time as low as 1 ms for epi-detection.
  • Item
    Molecular Specific and Sensitive Detection of Pyrazinamide and Its Metabolite Pyrazinoic Acid by Means of Surface Enhanced Raman Spectroscopy Employing In Situ Prepared Colloids
    (Basel : MDPI, 2019) Mühlig, Anna; Jahn, Izabella-Jolan; Heidler, Jan; Weber, Karina; Jahn, Martin; Sheen, Patricia; Zimic, Mirko; Cialla-May, Dana; Popp, Jürgen
    The prodrug pyrazinamide (PZA) is metabolized by the mycobacteria to pyrazinoic acid (POA), which is expelled into the extracellular environment. PZA resistance is highly associated to a lack of POA efflux. Thus, by detecting a reduction of the concentration of POA in the extracellular environment, by means of lab-on-a-chip (LoC)-SERS (surface-enhanced Raman spectroscopy), an alternative approach for the discrimination of PZA resistant mycobacteria is introduced. A droplet-based microfluidic SERS device has been employed to illustrate the potential of the LoC-SERS method for the discrimination of PZA resistant mycobacteria. The two analytes were detected discretely in aqueous solution with a limit of detection of 27 µm for PZA and 21 µm for POA. The simultaneous detection of PZA and POA in aqueous mixtures could be realized within a concentration range from 20 μm to 50 μm for PZA and from 50 μm to 80 μm for POA.
  • Item
    Application of High-Throughput Screening Raman Spectroscopy (HTS-RS) for Label-Free Identification and Molecular Characterization of Pollen
    (Basel : MDPI, 2019) Mondol, Abdullah S.; Patel, Milind D.; Rüger, Jan; Stiebing, Clara; Kleiber, Andreas; Henkel, Thomas; Popp, Jürgen; Schie, Iwan W.
    Pollen studies play a critical role in various fields of science. In the last couple of decades, replacement of manual identification of pollen by image-based methods using pollen morphological features was a great leap forward, but challenges for pollen with similar morphology remain, and additional approaches are required. Spectroscopy approaches for identification of pollen, such as Raman spectroscopy has potential benefits over traditional methods, due to the investigation of the intrinsic molecular composition of a sample. However, current Raman-based characterization of pollen is complex and time-consuming, resulting in low throughput and limiting the statistical significance of the acquired data. Previously demonstrated high-throughput screening Raman spectroscopy (HTS-RS) eliminates the complexity as well as human interaction by incorporation full automation of the data acquisition process. Here, we present a customization of HTS-RS for pollen identification, enabling sampling of a large number of pollen in comparison to other state-of-the-art Raman pollen investigations. We show that using Raman spectra we are able to provide a preliminary estimation of pollen types based on growth habits using hierarchical cluster analysis (HCA) as well as good taxonomy of 37 different Pollen using principal component analysis-support vector machine (PCA-SVM) with good accuracy even for the pollen specimens sharing similar morphological features. Our results suggest that HTS-RS platform meets the demands for automated pollen detection making it an alternative method for research concerning pollen.
  • Item
    Counterfeit and substandard test of the antimalarial tablet Riamet® by means of Raman hyperspectral multicomponent analysis
    (Basel : MDPI, 2019) Frosch, Timea; Wyrwich, Elisabeth; Yan, Di; Domes, Christian; Domes, Robert; Popp, Jürgen; Frosch, Torsten
    The fight against counterfeit pharmaceuticals is a global issue of utmost importance, as failed medication results in millions of deaths every year. Particularly affected are antimalarial tablets. A very important issue is the identification of substandard tablets that do not contain the nominal amounts of the active pharmaceutical ingredient (API), and the differentiation between genuine products and products without any active ingredient or with a false active ingredient. This work presents a novel approach based on fiber-array based Raman hyperspectral imaging to qualify and quantify the antimalarial APIs lumefantrine and artemether directly and non-invasively in a tablet in a time-efficient way. The investigations were carried out with the antimalarial tablet Riamet® and self-made model tablets, which were used as examples of counterfeits and substandard. Partial least-squares regression modeling and density functional theory calculations were carried out for quantification of lumefantrine and artemether and for spectral band assignment. The most prominent differentiating vibrational signatures of the APIs were presented.
  • Item
    TopUp SERS substrates with integrated internal standard
    (Basel : MDPI, 2018) Patze, Sophie; Hübner, Uwe; Weber, Karina; Cialla-May, Dana; Popp, Jürgen
    Surface-enhanced Raman spectroscopy (SERS) is known as a molecular-specific and highly sensitive method. In order to enable the routine application of SERS, powerful SERS substrates are of great importance. Within this manuscript, a TopUp SERS substrate is introduced which is fabricated by a top-down process based on microstructuring as well as a bottom-up generation of silver nanostructures. The Raman signal of the support material acts as an internal standard in order to improve the quantification capabilities. The analyte molecule coverage of sulfamethoxazole on the surface of the nanostructures is characterized by the SERS signal evolution fitted by a Langmuir–Freundlich isotherm.