Search Results

Now showing 1 - 2 of 2
  • Item
    Tailoring the Cavity of Hollow Polyelectrolyte Microgels
    (Weinheim : Wiley-VCH, 2020) Wypysek, Sarah K.; Scotti, Andrea; Alziyadi, Mohammed O.; Potemkin, Igor I.; Denton, Alan R.; Richtering, Walter
    The authors demonstrate how the size and structure of the cavity of hollow charged microgels may be controlled by varying pH and ionic strength. Hollow charged microgels based on N-isopropylacrylamide with ionizable co-monomers (itaconic acid) combine advanced structure with enhanced responsiveness to external stimuli. Structural advantages accrue from the increased surface area provided by the extra internal surface. Extreme sensitivity to pH and ionic strength due to ionizable moieties in the polymer network differentiates these soft colloidal particles from their uncharged counterparts, which sustain a hollow structure only at cross-link densities sufficiently high that stimuli sensitivity is reduced. Using small-angle neutron and light scattering, increased swelling of the network in the charged state accompanied by an expanded internal cavity is observed. Upon addition of salt, the external fuzziness of the microgel surface diminishes while the internal fuzziness grows. These structural changes are interpreted via Poisson–Boltzmann theory in the cell model. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Item
    Synthesis of Polyampholyte Janus-like Microgels by Coacervation of Reactive Precursors in Precipitation Polymerization
    (Weinheim : Wiley-VCH, 2020) Xu, Wenjing; Rudov, Andrey; Oppermann, Alex; Wypysek, Sarah; Kather, Michael; Schroeder, Ricarda; Richtering, Walter; Potemkin, Igor I.; Wöll, Dominik; Pich, Andrij
    Controlling the distribution of ionizable groups of opposite charge in microgels is an extremely challenging task, which could open new pathways to design a new generation of stimuli-responsive colloids. Herein, we report a straightforward approach for the synthesis of polyampholyte Janus-like microgels, where ionizable groups of opposite charge are located on different sides of the colloidal network. This synthesis approach is based on the controlled self-assembly of growing polyelectrolyte microgel precursors during the precipitation polymerization process. We confirmed the morphology of polyampholyte Janus-like microgels and demonstrate that they are capable of responding quickly to changes in both pH and temperature in aqueous solutions. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.