Search Results

Now showing 1 - 7 of 7
  • Item
    Sustainable Development Goals (SDGs): Are we successful in turning trade-offs into synergies?
    (Basingstoke, Hampshire : Palgrave Macmillan, 2019) Kroll, Christian; Warchold, Anne; Pradhan, Prajal
    The Agenda 2030 with its 17 Sustainable Development Goals (SDGs) provides the framework that all United Nations (UN) member states have pledged to fulfill. The achievement of this agenda crucially depends on whether humankind will be able to maximize synergies and resolve existing trade-offs between the SDGs. We provide the first analysis of future interactions for projected SDG trends until 2030 within and between goals, and we analyze how trade-offs and synergies have evolved in the recent past globally. For certain goals, we find positive developments with notable synergies in our projections, especially for SDGs 1, 3, 7, 8, and 9: Poverty alleviation and strengthening the economy, rooted in innovation, and modern infrastructure, therefore continue to be the basis upon which many of the other SDGs can be achieved. However, especially SDGs 11, 13, 14, 16, and 17 will continue to have notable trade-offs, as well as non-associations with the other goals in the future, which emphasizes the need to foster innovations and policies that can make our cities and communities more sustainable, as well as strengthen institutions and spur climate action. We show examples of a successful transformation of trade-offs into synergies that should be emulated in other areas to create a virtuous cycle of SDG progress. The alarming inability to overcome certain persistent trade-offs we have found, and indeed the deterioration for some SDGs, can seriously threaten the achievement of the Agenda 2030.
  • Item
    Food Surplus and Its Climate Burdens
    (Columbus, Ohio : American Chemical Society, 2016) Hiç, Ceren; Pradhan, Prajal; Rybski, Diego; Kropp, Jürgen P.
    Avoiding food loss and waste may counteract the increasing food demand and reduce greenhouse gas (GHG) emissions from the agricultural sector. This is crucial because of limited options available to increase food production. In the year 2010, food availability was 20% higher than was required on a global scale. Thus, a more sustainable food production and adjusted consumption would have positive environmental effects. This study provides a systematic approach to estimate consumer level food waste on a country scale and globally, based on food availability and requirements. The food requirement estimation considers demographic development, body weights, and physical activity levels. Surplus between food availability and requirements of a given country is considered as food waste. The global food requirement changed from 2,300 kcal/cap/day to 2,400 kcal/cap/day during the last 50 years, while food surplus grew from 310 kcal/cap/day to 510 kcal/cap/day. Similarly, GHG emissions related to the food surplus increased from 130 Mt CO2eq/yr to 530 Mt CO2eq/yr, an increase of more than 300%. Moreover, the global food surplus may increase up to 850 kcal/cap/day, while the total food requirement will increase only by 2%–20% by 2050. Consequently, GHG emissions associated with the food waste may also increase tremendously to 1.9–2.5 Gt CO2eq/yr.
  • Item
    A systematic study of sustainable development goal (SDG) interactions
    (Hoboken, NJ : Wiley, 2017) Pradhan, Prajal; Costa, Luís; Rybski, Diego; Lucht, Wolfgang; Kropp, Jürgen P.
    Sustainable development goals (SDGs) have set the 2030 agenda to transform our world by tackling multiple challenges humankind is facing to ensure well‐being, economic prosperity, and environmental protection. In contrast to conventional development agendas focusing on a restricted set of dimensions, the SDGs provide a holistic and multidimensional view on development. Hence, interactions among the SDGs may cause diverging results. To analyze the SDG interactions we systematize the identification of synergies and trade‐offs using official SDG indicator data for 227 countries. A significant positive correlation between a pair of SDG indicators is classified as a synergy while a significant negative correlation is classified as a trade‐off. We rank synergies and trade‐offs between SDGs pairs on global and country scales in order to identify the most frequent SDG interactions. For a given SDG, positive correlations between indicator pairs were found to outweigh the negative ones in most countries. Among SDGs the positive and negative correlations between indicator pairs allowed for the identification of particular global patterns. SDG 1 (No poverty) has synergetic relationship with most of the other goals, whereas SDG 12 (Responsible consumption and production) is the goal most commonly associated with trade‐offs. The attainment of the SDG agenda will greatly depend on whether the identified synergies among the goals can be leveraged. In addition, the highlighted trade‐offs, which constitute obstacles in achieving the SDGs, need to be negotiated and made structurally nonobstructive by deeper changes in the current strategies.
  • Item
    Hungry cities: how local food self-sufficiency relates to climate change, diets, and urbanisation
    (Bristol : IOP Publ., 2019) Kriewald, Steffen; Pradhan, Prajal; Costa, Luis; Ros, Anselmo García Cantú; Kropp, Juergen P.
    Using a newly developed model approach and combining it with remote sensing, population, and climate data, first insights are provided into how local diets, urbanisation, and climate change relates to local urban food self-sufficiency. In plain terms, by utilizing the global peri-urban (PU) food production potential approximately 1bn urban residents (30% of global urban population) can be locally nourished, whereby further urbanisation is by far the largest pressure factor on PU agriculture, followed by a change of diets, and climate change. A simple global food transport model which optimizes transport and neglects differences in local emission intensities indicates that CO2 emissions related to food transport can be reduced by a factor of 10.
  • Item
    Reducing deforestation and improving livestock productivity: greenhouse gas mitigation potential of silvopastoral systems in Caquetá
    (Bristol : IOP Publ., 2019) Landholm, David M.; Pradhan, Prajal; Wegmann, Peter; Sánchez, Miguel A. Romero; Salazar, Juan Carlos Suárez; Kropp, Juergen P.
    Colombia's agriculture, forestry and other land use sector accounts for nearly half of its total greenhouse gas (GHG) emissions. The importance of smallholder deforestation is comparatively high in relation to its regional counterparts, and livestock agriculture represents the largest driver of primary forest depletion. Silvopastoral systems (SPSs) are presented as agroecological solutions that synergistically enhance livestock productivity, improve local farmers' livelihoods and hold the potential to reduce pressure on forest conversion. The department of Caquetá represents Colombia's most important deforestation hotspot. Targeting smallholder livestock farms through survey data, in this work we investigate the GHG mitigation potential of implementing SPSs for smallholder farms in this region. Specifically, we assess whether the carbon sequestration taking place in the soil and biomass of SPSs is sufficient to offset the per-hectare increase in livestock GHG emissions resulting from higher stocking rates. To address these questions we use data on livestock population characteristics and historic land cover changes reported from a survey covering 158 farms and model the carbon sequestration occurring in three different scenarios of progressively-increased SPS complexity using the CO2 fix model. We find that, even with moderate tree planting densities, the implementation of SPSs can reduce GHG emissions by 2.6 Mg CO2e ha−1 yr−1 in relation to current practices, while increasing agriculture productivity and contributing to the restoration of severely degraded landscapes.
  • Item
    Embodied crop calories in animal products
    (Bristol : IOP Publishing, 2013) Pradhan, Prajal; Lüdeke, Matthias K.B.; Reusser, Dominik E.; Kropp, Jürgen P.
    Increases in animal products consumption and the associated environmental consequences have been a matter of scientific debate for decades. Consequences of such increases include rises in greenhouse gas emissions, growth of consumptive water use, and perturbation of global nutrients cycles. These consequences vary spatially depending on livestock types, their densities and their production system. In this letter, we investigate the spatial distribution of embodied crop calories in animal products. On a global scale, about 40% of the global crop calories are used as livestock feed (we refer to this ratio as crop balance for livestock) and about 4 kcal of crop products are used to generate 1 kcal of animal products (embodied crop calories of around 4). However, these values vary greatly around the world. In some regions, more than 100% of the crops produced is required to feed livestock requiring national or international trade to meet the deficit in livestock feed. Embodied crop calories vary between less than 1 for 20% of the livestock raising areas worldwide and greater than 10 for another 20% of the regions. Low values of embodied crop calories are related to production systems for ruminants based on fodder and forage, while large values are usually associated with production systems for non-ruminants fed on crop products. Additionally, we project the future feed demand considering three scenarios: (a) population growth, (b) population growth and changes in human dietary patterns and (c) changes in population, dietary patterns and feed conversion efficiency. When considering dietary changes, we project the global feed demand to be almost doubled (1.8–2.3 times) by 2050 compared to 2000, which would force us to produce almost equal or even more crops to raise our livestock than to directly nourish ourselves in the future. Feed demand is expected to increase over proportionally in Africa, South-Eastern Asia and Southern Asia, putting additional stress on these regions.
  • Item
    Relating climate compatible development and human livelihood
    (Amsterdam : Elsevier, 2013) Reusser, Dominik; Lissner, Tabea; Pradhan, Prajal; Holsten, Anne; Rybski, Diego; Kropp, Jürgen P.
    We explore the link between improvements in human development and greenhouse gas emission. We argue that a disaggregated view on human development is required to understand the potential for decoupling of development from greenhouse gas emissions. To do so, we relate 16 elements from the livelihood index to emissions. Improvements in livelihood are decoupled from emissions for 10 elements, while only 6 are related to significant emissions. We operate the proposed framework for the example of food consumption and related emissions and find a reduction potential of about 13% compared to the total emissions from this sector.