Search Results

Now showing 1 - 2 of 2
  • Item
    Climate change and potential distribution of potato (Solanum tuberosum) crop cultivation in Pakistan using Maxent
    (Springfield, MO : AIMS Press, 2021) Khalil, Tayyaba; Asad, Saeed A.; Khubaib, Nusaiba; Baig, Ayesha; Atif, Salman; Umar, Muhammad; Kropp, Jürgen P.; Pradhan, Prajal; Baig, Sofia
    The impacts of climate change are projected to become more intense and frequent. One of the indirect impacts of climate change is food insecurity. Agriculture in Pakistan, measured fourth best in the world, is already experiencing visible adverse impacts of climate change. Among many other food sources, potato crop remains one of the food security crops for developing nations. Potatoes are widely cultivated in Pakistan. To assess the impact of climate change on potato crop in Pakistan, it is imperative to analyze its distribution under future climate change scenarios using Species Distribution Models (SDMs). Maximum Entropy Model is used in this study to predict the spatial distribution of Potato in 2070 using two CMIP5 models for two climate change scenarios (RCP 4.5 and RCP 8.5). 19 Bioclimatic variables are incorporated along with other contributing variables like soil type, elevation and irrigation. The results indicate slight decrease in the suitable area for potato growth in RCP 4.5 and drastic decrease in suitable area in RCP 8.5 for both models. The performance evaluation of the model is based on AUC. AUC value of 0.85 suggests the fitness of the model and thus, it is applicable to predict the suitable climate for potato production in Pakistan. Sustainable potato cultivation is needed to increase productivity in developing countries while promoting better resource management and optimization.
  • Item
    Severe climate change risks to food security and nutrition
    (Amsterdam [u.a.] : Elsevier, 2022) Mirzabaev, Alisher; Bezner Kerr, Rachel; Hasegawa, Toshihiro; Pradhan, Prajal; Wreford, Anita; Tirado von der Pahlen, Maria Cristina; Gurney-Smith, Helen
    This paper discusses severe risks to food security and nutrition that are linked to ongoing and projected climate change, particularly climate and weather extremes in global warming, drought, flooding, and precipitation. We specifically consider the impacts on populations vulnerable to food insecurity and malnutrition due to lower income, lower access to nutritious food, or social discrimination. The paper defines climate-related “severe risk” in the context of food security and nutrition, using a combination of criteria, including the magnitude and likelihood of adverse consequences, the timing of the risk and the ability to reduce the risk. Severe climate change risks to food security and nutrition are those which result, with high likelihood, in pervasive and persistent food insecurity and malnutrition for millions of people, have the potential for cascading effects beyond the food systems, and against which we have limited ability to prevent or fully respond. The paper uses internationally agreed definitions of risks to food security and nutrition to describe the magnitude of adverse consequences. Moreover, the paper assesses the conditions under which climate change-induced risks to food security and nutrition could become severe based on findings in the literature using different climate change scenarios and shared socioeconomic pathways. Finally, the paper proposes adaptation options, including institutional management and governance actions, that could be taken now to prevent or reduce the severe climate risks to future human food security and nutrition.