Search Results

Now showing 1 - 2 of 2
  • Item
    Climate change and potential distribution of potato (Solanum tuberosum) crop cultivation in Pakistan using Maxent
    (Springfield, MO : AIMS Press, 2021) Khalil, Tayyaba; Asad, Saeed A.; Khubaib, Nusaiba; Baig, Ayesha; Atif, Salman; Umar, Muhammad; Kropp, Jürgen P.; Pradhan, Prajal; Baig, Sofia
    The impacts of climate change are projected to become more intense and frequent. One of the indirect impacts of climate change is food insecurity. Agriculture in Pakistan, measured fourth best in the world, is already experiencing visible adverse impacts of climate change. Among many other food sources, potato crop remains one of the food security crops for developing nations. Potatoes are widely cultivated in Pakistan. To assess the impact of climate change on potato crop in Pakistan, it is imperative to analyze its distribution under future climate change scenarios using Species Distribution Models (SDMs). Maximum Entropy Model is used in this study to predict the spatial distribution of Potato in 2070 using two CMIP5 models for two climate change scenarios (RCP 4.5 and RCP 8.5). 19 Bioclimatic variables are incorporated along with other contributing variables like soil type, elevation and irrigation. The results indicate slight decrease in the suitable area for potato growth in RCP 4.5 and drastic decrease in suitable area in RCP 8.5 for both models. The performance evaluation of the model is based on AUC. AUC value of 0.85 suggests the fitness of the model and thus, it is applicable to predict the suitable climate for potato production in Pakistan. Sustainable potato cultivation is needed to increase productivity in developing countries while promoting better resource management and optimization.
  • Item
    The ongoing nutrition transition thwarts long-term targets for food security, public health and environmental protection
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Bodirsky, Benjamin Leon; Dietrich, Jan Philipp; Martinelli, Eleonora; Stenstad, Antonia; Pradhan, Prajal; Gabrysch, Sabine; Mishra, Abhijeet; Weindl, Isabelle; Le Mouël, Chantal; Rolinski, Susanne; Baumstark, Lavinia; Wang, Xiaoxi; Waid, Jillian L.; Lotze-Campen, Hermann; Popp, Alexander
    The nutrition transition transforms food systems globally and shapes public health and environmental change. Here we provide a global forward-looking assessment of a continued nutrition transition and its interlinked symptoms in respect to food consumption. These symptoms range from underweight and unbalanced diets to obesity, food waste and environmental pressure. We find that by 2050, 45% (39–52%) of the world population will be overweight and 16% (13–20%) obese, compared to 29% and 9% in 2010 respectively. The prevalence of underweight approximately halves but absolute numbers stagnate at 0.4–0.7 billion. Aligned, dietary composition shifts towards animal-source foods and empty calories, while the consumption of vegetables, fruits and nuts increases insufficiently. Population growth, ageing, increasing body mass and more wasteful consumption patterns are jointly pushing global food demand from 30 to 45 (43–47) Exajoules. Our comprehensive open dataset and model provides the interfaces necessary for integrated studies of global health, food systems, and environmental change. Achieving zero hunger, healthy diets, and a food demand compatible with environmental boundaries necessitates a coordinated redirection of the nutrition transition. Reducing household waste, animal-source foods, and overweight could synergistically address multiple symptoms at once, while eliminating underweight would not substantially increase food demand.