Search Results

Now showing 1 - 10 of 19
  • Item
    Comment on "Synthesis, characterization and growth mechanism of flower-like vanadium carbide hierarchical nanocrystals"
    (Cambridge : Royal Society of Chemistry, 2012) Presser, Volker; Vakifahmetoglu, Cekdar
    This Letter is in response to a recent paper by Ma et al. (CrystEngComm, 2010, 12, 750-754) which arguably studied vanadium carbide nanostructures whereas all available evidence indicates the study of vanadium oxide. We feel that it is important to communicate to the community several inconsistencies so that the interesting material reported can be seen in the right light, especially with several groups nowadays having reported similar structures from vanadium oxide synthesis.
  • Item
    One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes
    (Cambridge : Royal Society of Chemistry, 2014) Naguib, Michael; Mashtalir, Olhar; Lukatskaya, Maria R.; Dyatkin, Boris; Zhang, Chuanfang; Presser, Volker; Gogotsi, Yuri; Barsoum, Michael W.
    Herein we show that heating 2D Ti3C2 in air results in TiO2 nanocrystals enmeshed in thin sheets of disordered graphitic carbon structures that can handle extremely high cycling rates when tested as anodes in lithium ion batteries. Oxidation of 2D Ti3C2 in either CO2 or pressurized water also resulted in TiO2–C hybrid structures. Similarly, other hybrids can be produced, as we show here for Nb2O5/C from 2D Nb2C.
  • Item
    Vanadia–titania multilayer nanodecoration of carbon onions via atomic layer deposition for high performance electrochemical energy storage
    (Cambridge : Royal Society of Chemistry, 2016) Fleischamann, Simon; Tolosa, Aura; Zieger, Marco; Krüner, Benjamin; Peter, Nicolas J.; Grobelsek, Ingrid; Quade, Antje; Kruth, Angela; Presser, Volker
    Atomic layer deposition has proven to be a particularly attractive approach for ecorating mesoporous carbon substrates with redox active metal oxides for lectrochemical energy storage. This study, for the first time, capitalizes on the cyclic character of atomic layer deposition to obtain highly conformal and atomically controlled decoration of carbon onions with alternating stacks of vanadia and titania. The addition of 25 mass% TiO2 leads to expansion of the VO2 unit cell, thus greatly enhancing lithium intercalation capacity and kinetics. Electrochemical characterization revealed an ultrahigh discharge capacity of up to 382 mA h g^-1 of the composite electrode (554 mA h g^-1 per metal oxide) with an impressive capacity retention of 82 mA h g^-1 (120 mA h g^-1 per metal oxide) at a high discharge rate of 20 A g^-1 or 52C. Stability benchmarking showed stability over 3000 cycles when discharging to a reduced potential of ^-1.8 V vs. carbon. These capacity values are among the highest reported for any metal oxide system, while in addition, upercapacitor-like power performance and longevity are achieved. At a device level, high specific energy and power of up to 110 W h kg^-1 and 6 kW kg^-1, respectively, were achieved when employing the hybrid material as anode versus activated carbon cathode.
  • Item
    In situ tracking of the nanoscale expansion of porous carbon electrodes
    (Cambridge : Royal Society of Chemistry, 2013) Arruda, Thomas M.; Heon, Min; Presser, Volker; Hillesheim, Patrick C.; Dai, Sheng; Gogotsi, Yury; Kalinin, Sergei V.; Balke, Nina
    Electrochemical double layer capacitors (EDLC) are rapidly emerging as a promising energy storage technology offering extremely large power densities. Despite significant experimental progress, nanoscale operation mechanisms of the EDLCs remain poorly understood and it is difficult to separate processes at multiple time and length scales involved in operation including that of double layer charging and ionic mass transport. Here we explore the functionality of EDLC microporous carbon electrodes using a combination of classical electrochemical measurements and scanning probe microscopy based dilatometry, thus separating individual stages in charge/discharge processes based on strain generation. These methods allowed us to observe two distinct modes of EDLC charging, one fast charging of the double layer unassociated with strain, and another much slower mass transport related charging exhibiting significant sample volume changes. These studies open the pathway for the exploration of electrochemical systems with multiple processes involved in the charge and discharge, and investigation of the kinetics of those processes.
  • Item
    Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization
    (Cambridge : Royal Society of Chemistry, 2013) Presser, Volker; Porada, S.; Borchardt, L.; Oschatz, M.; Bryjak, M.; Atchison, Jennifer; Keesmann, K.J.; Kaskel, S.; Biesheuvel, P.M.
    Desalination by capacitive deionization (CDI) is an emerging technology for the energy- and cost-efficient removal of ions from water by electrosorption in charged porous carbon electrodes. A variety of carbon materials, including activated carbons, templated carbons, carbon aerogels, and carbon nanotubes, have been studied as electrode materials for CDI. Using carbide-derived carbons (CDCs) with precisely tailored pore size distributions (PSD) of micro- and mesopores, we studied experimentally and theoretically the effect of pore architecture on salt electrosorption capacity and salt removal rate. Of the reported CDC-materials, ordered mesoporous silicon carbide-derived carbon (OM SiC-CDC), with a bimodal distribution of pore sizes at 1 and 4 nm, shows the highest salt electrosorption capacity per unit mass, namely 15.0 mg of NaCl per 1 g of porous carbon in both electrodes at a cell voltage of 1.2 V (12.8 mg per 1 g of total electrode mass). We present a method to quantify the influence of each pore size increment on desalination performance in CDI by correlating the PSD with desalination performance. We obtain a high correlation when assuming the ion adsorption capacity to increase sharply for pore sizes below one nanometer, in line with previous observations for CDI and for electrical double layer capacitors, but in contrast to the commonly held view about CDI that mesopores are required to avoid electrical double layer overlap. To quantify the dynamics of CDI, we develop a two-dimensional porous electrode modified Donnan model. For two of the tested materials, both containing a fair degree of mesopores (while the total electrode porosity is [similar]95 vol%), the model describes data for the accumulation rate of charge (current) and salt accumulation very well, and also accurately reproduces the effect of an increase in electrode thickness. However, for TiC-CDC with hardly any mesopores, and with a lower total porosity, the current is underestimated. Calculation results show that a material with higher electrode porosity is not necessarily responding faster, as more porosity also implies longer transport pathways across the electrode. Our work highlights that a direct prediction of CDI performance both for equilibrium and dynamics can be achieved based on the PSD and knowledge of the geometrical structure of the electrodes.
  • Item
    Nuclear magnetic resonance study of ion adsorption on microporous carbide-derived carbon
    (Cambridge : Royal Society of Chemistry, 2013) Presser, Volker; Forse, Alexander C.; Griffin, John M.; Wang, Hao; Trease, Nicole M.; Gogotsi, Yuri; Simon, Patrice; Grey, Clare P.
    A detailed understanding of ion adsorption within porous carbon is key to the design and improvement of electric double-layer capacitors, more commonly known as supercapacitors. In this work nuclear magnetic resonance (NMR) spectroscopy is used to study ion adsorption in porous carbide-derived carbons. These predominantly microporous materials have a tuneable pore size which enables a systematic study of the effect of pore size on ion adsorption. Multinuclear NMR experiments performed on the electrolyte anions and cations reveal two main environments inside the carbon. In-pore ions (observed at low frequencies) are adsorbed inside the pores, whilst ex-pore ions (observed at higher frequencies) are not adsorbed and are in large reservoirs of electrolyte between carbon particles. All our experiments were carried out in the absence of an applied electrical potential in order to assess the mechanisms related to ion adsorption without the contribution of electrosorption. Our results indicate similar adsorption behaviour for anions and cations. Furthermore, we probe the effect of sample orientation, which is shown to have a marked effect on the NMR spectra. Finally, we show that a 13C → 1H cross polarisation experiment enables magnetisation transfer from the carbon architecture to the adsorbed species, allowing selective observation of the adsorbed ions and confirming our spectral assignments.
  • Item
    An electrochemical in situ study of freezing and thawing of ionic liquids in carbon nanopores
    (Cambridge : Royal Society of Chemistry, 2014) Weingarth, Daniel; Drumm, Robert; Foelske-Schmitz, Annette; Kotz, Rüdiger; Presser, Volker
    Room temperature ionic liquids (RTILs) are an emerging class of electrolytes enabling high cell voltages and, in return, high energy density of advanced supercapacitors. Yet, the low temperature behavior, including freezing and thawing, is little understood when ions are confined in the narrow space of nanopores. This study shows that RTILs may show a tremendously different thermal behavior when comparing bulk with nanoconfined properties as a result of the increased surface energy of carbon pore walls. In particular, a continuous increase in viscosity is accompanied by slowed-down charge-discharge kinetics as seen with in situ electrochemical characterization. Freezing reversibly collapses the energy storage ability and thawing fully restores the initial energy density of the material. For the first time, a different thermal behavior in positively and negatively polarized electrodes is demonstrated. This leads to different freezing and melting points in the two electrodes. Compared to bulk, RTILs in the confinement of electrically charged nanopores show a high affinity for supercooling; that is, the electrode may freeze during heating.
  • Item
    Review: Carbon onions for electrochemical energy storage
    (Cambridge : Royal Society of Chemistry, 2016) Zeiger, Marco; Jäckel, Nicolas; Mochalin, Vadym N.; Presser, Volker
    Carbon onions are a relatively new member of the carbon nanomaterials family. They consist of multiple concentric fullerene-like carbon shells which are highly defective and disordered. Due to their small size of typically below 10 nm, the large external surface area, and high conductivity they are used for supercapacitor applications. As electrode materials, carbon onions provide fast charge/discharge rates resulting in high specific power but present comparatively low specific energy. They improve the performance of activated carbon electrodes as conductive additives and show suitable properties as substrates for redox-active materials. This review provides a critical discussion of the electrochemical properties of different types of carbon onions as electrode materials. It also compares the general advantages and disadvantages of different carbon onion synthesis methods. The physical and chemical properties of carbon onions, in particular nanodiamond-derived carbon onions, are described with emphasis on those parameters especially important for electrochemical energy storage systems, including the structure, conductivity, and porosity. Although the primary focus of current research is on electrode materials for supercapacitors, the use of carbon onions as conductive additives and for redox-active species is also discussed.
  • Item
    Emulsion soft templating of carbide-derived carbon nanospheres with controllable porosity for capacitive electrochemical energy storage
    (Cambridge : Royal Society of Chemistry, 2015) Oschatz, Martin; Zeiger, Marco; Jaeckel, Nicolas; Strubel, Patrick; Borchardt, Lars; Reinhold, Romy; Nickel, Winfried; Eckert, Jürgen; Presser, Volker; Kaskel, Stefan
    A new approach to produce carbide-derived carbon nanospheres of 20-200 nm in diameter based on a novel soft-templating technique is presented. Platinum catalysis is used for the cross-linking of liquid (allylhydrido)polycarbosilane polymer chains with para-divinylbenzene within oil-in-water miniemulsions. Quantitative implementation of the pre-ceramic polymer can be achieved allowing precise control over the resulting materials. After pyrolysis and high-temperature chlorine treatment, resulting particles offer ideal spherical shape, very high specific surface area (up to 2347 m^2/g^-1), and large micro/mesopore volume (up to 1.67 cm^3/g^-1). The internal pore structure of the nanospheres is controllable by the composition of the oil phase within the miniemulsions. The materials are highly suitable for electrochemical double-layer capacitors with high specific capacitances in aqueous 1 M Na2SO4 solution (110 F/g^-1) and organic 1 M tetraethylammonium tetrafluoroborate in acetonitrile (130 F/g^-1).
  • Item
    Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation
    (Cambridge : Royal Society of Chemistry, 2014) Porada, S.; Weingarth, Daniel; Hamelers, H.V.M.; Bryjak, M.; Presser, Volker; Biesheuvel, P.M.
    Capacitive technologies, such as capacitive deionization and energy harvesting based on mixing energy (“capmix” and “CO2 energy”), are characterized by intermittent operation: phases of ion electrosorption from the water are followed by system regeneration. From a system application point of view, continuous operation has many advantages, to optimize performance, to simplify system operation, and ultimately to lower costs. In our study, we investigate as a step towards second generation capacitive technologies the potential of continuous operation of capacitive deionization and energy harvesting devices, enabled by carbon flow electrodes using a suspension based on conventional activated carbon powders. We show how the water residence time and mass loading of carbon in the suspension influence system performance. The efficiency and kinetics of the continuous salt removal process can be improved by optimizing device operation, without using less common or highly elaborate novel materials. We demonstrate, for the first time, continuous energy generation via capacitive mixing technology using differences in water salinity, and differences in gas phase CO2 concentration. Using a novel design of cylindrical ion exchange membranes serving as flow channels, we continuously extract energy from available concentration differences that otherwise would remain unused. These results may contribute to establishing a sustainable energy strategy when implementing energy extraction for sources such as CO2-emissions from power plants based on fossil fuels.