Search Results

Now showing 1 - 10 of 21
  • Item
    Time‐Dependent Cation Selectivity of Titanium Carbide MXene in Aqueous Solution
    (Weinheim : Wiley-VCH, 2022) Wang, Lei; Torkamanzadeh, Mohammad; Majed, Ahmad; Zhang, Yuan; Wang, Qingsong; Breitung, Ben; Feng, Guang; Naguib, Michael; Presser, Volker
    Electrochemical ion separation is a promising technology to recover valuable ionic species from water. Pseudocapacitive materials, especially 2D materials, are up-and-coming electrodes for electrochemical ion separation. For implementation, it is essential to understand the interplay of the intrinsic preference of a specific ion (by charge/size), kinetic ion preference (by mobility), and crystal structure changes. Ti3C2Tz MXene is chosen here to investigate its selective behavior toward alkali and alkaline earth cations. Utilizing an online inductively coupled plasma system, it is found that Ti3C2Tz shows a time-dependent selectivity feature. In the early stage of charging (up to about 50 min), K+ is preferred, while ultimately Ca2+ and Mg2+ uptake dominate; this unique phenomenon is related to dehydration energy barriers and the ion exchange effect between divalent and monovalent cations. Given the wide variety of MXenes, this work opens the door to a new avenue where selective ion-separation with MXene can be further engineered and optimized.
  • Item
    Combining Battery‐Type and Pseudocapacitive Charge Storage in Ag/Ti3C2Tx MXene Electrode for Capturing Chloride Ions with High Capacitance and Fast Ion Transport
    (Hoboken, NJ : Wiley, 2020) Liang, Mingxing; Wang, Lei; Presser, Volker; Dai, Xiaohu; Yu, Fei; Ma, Jie
    The recent advances in chloride‐ion capturing electrodes for capacitive deionization (CDI) are limited by the capacity, rate, and stability of desalination. This work introduces Ti3C2Tx/Ag synthesized via a facile oxidation‐reduction method and then uses it as an anode for chloride‐ion capture in CDI. Silver nanoparticles are formed successfully and uniformly distributed with the layered‐structure of Ti3C2Tx. All Ti3C2Tx/Ag samples are hydrophilic, which is beneficial for water desalination. Ti3C2Tx/Ag samples with a low charge transfer resistance exhibit both pseudocapacitive and battery behaviors. Herein, the Ti3C2Tx/Ag electrode with a reaction time of 3 h exhibits excellent desalination performance with a capacity of 135 mg Cl− g−1 at 20 mA g−1 in a 10 × 10−3 m NaCl solution. Furthermore, low energy consumption of 0.42 kWh kg−1 Cl− and a desalination rate of 1.5 mg Cl− g−1 min−1 at 50 mA g−1 is achieved. The Ti3C2Tx/Ag system exhibits fast rate capability, high desalination capacity, low energy consumption, and excellent cyclability, which can be ascribed to the synergistic effect between the battery and pseudocapacitive behaviors of the Ti3C2Tx/Ag hybrid material. This work provides fundamental insight into the coupling of battery and pseudocapacitive behaviors during Cl− capture for electrochemical desalination.
  • Item
    Monitoring the thermally induced transition from sp3-hybridized into sp2-hybridized carbons
    (Amsterdam [u.a.] : Elsevier Science, 2021) Schüpfer, Dominique B.; Badaczewski, Felix; Peilstöcker, Jan; Guerra-Castro, Juan Manuel; Shim, Hwirim; Firoozabadi, Saleh; Beyer, Andreas; Volz, Kerstin; Presser, Volker; Heiliger, Christian; Smarsly, Bernd; Klar, Peter J.
    The preparation of carbons for technical applications is typically based on a treatment of a precursor, which is transformed into the carbon phase with the desired structural properties. During such treatment the material passes through several different structural stages, for example, starting from precursor molecules via an amorphous phase into crystalline-like phases. While the structure of non-graphitic and graphitic carbon has been well studied, the transformation stages from molecular to amorphous and non-graphitic carbon are still not fully understood. Disordered carbon often contains a mixture of sp3-, sp2-and sp1-hybridized bonds, whose analysis is difficult to interpret. We systematically address this issue by studying the transformation of purely sp3-hybridized carbons, that is, nanodiamond and adamantane, into sp2-hybridized non-graphitic and graphitic carbon. The precursor materials are thermally treated at different temperatures and the transformation stages are monitored. We employ Raman spectroscopy, WAXS and TEM to characterize the structural changes. We correlate the intensities and positions of the Raman bands with the lateral crystallite size La estimated by WAXS analysis. The behavior of the D and G Raman bands characteristic for sp2-type material formed by transforming the sp3-hybridized precursors into non-graphitic and graphitic carbon agrees well with that observed using sp2-structured precursors.
  • Item
    Effect of pore geometry on ultra-densified hydrogen in microporous carbons
    (Amsterdam [u.a.] : Elsevier Science, 2021) Tian, Mi; Lennox, Matthew J.; O’Malley, Alexander J.; Porter, Alexander J.; Krüner, Benjamin; Rudić, Svemir; Mays, Timothy J.; Düren, Tina; Presser, Volker; Terry, Lui R.; Rols, Stephane; Fang, Yanan; Dong, Zhili; Rochat, Sebastien; Ting, Valeska P.
    Our investigations into molecular hydrogen (H2) confined in microporous carbons with different pore geometries at 77 K have provided detailed information on effects of pore shape on densification of confined H2 at pressures up to 15 MPa. We selected three materials: a disordered, phenolic resin-based activated carbon, a graphitic carbon with slit-shaped pores (titanium carbide-derived carbon), and single-walled carbon nanotubes, all with comparable pore sizes of <1 nm. We show via a combination of in situ inelastic neutron scattering studies, high-pressure H2 adsorption measurements, and molecular modelling that both slit-shaped and cylindrical pores with a diameter of ∼0.7 nm lead to significant H2 densification compared to bulk hydrogen under the same conditions, with only subtle differences in hydrogen packing (and hence density) due to geometric constraints. While pore geometry may play some part in influencing the diffusion kinetics and packing arrangement of hydrogen molecules in pores, pore size remains the critical factor determining hydrogen storage capacities. This confirmation of the effects of pore geometry and pore size on the confinement of molecules is essential in understanding and guiding the development and scale-up of porous adsorbents that are tailored for maximising H2 storage capacities, in particular for sustainable energy applications.
  • Item
    Electrocatalytic fuel cell desalination for continuous energy and freshwater generation
    (Maryland Heights, MO : Cell Press, 2021) Zhang, Yuan; Wang, Lei; Presser, Volker
    Advanced hydrogen technologies contribute essentially to the decarbonization of our industrialized world. Large-scale hydrogen production would benefit from using the abundantly available water reservoir of our planet’s oceans. Current seawater-desalination technologies suffer from high energy consumption, high cost, or low performance. Here, we report technology for water desalination at seawater molarity, based on a polymer ion-exchange membrane fuel cell. By continuously supplying hydrogen and oxygen to the cell, a 160-mM concentration decrease from an initial value of 600 mM is accomplished within 40 h for a 55-mL reservoir. This device’s desalination rate in 600 mM NaCl and substitute ocean water are 18 g/m2/h and 16 g/m2/h, respectively. In addition, by removing 1 g of NaCl, 67 mWh of electric energy is generated. This proof-of-concept work shows the high application potential for sustainable fuel-cell desalination (FCD) using hydrogen as an energy carrier.
  • Item
    Ionophobicity of carbon sub-nanometer pores enables efficient desalination at high salinity
    (Maryland Heights, MO : Cell Press, 2022) Zhang, Yuan; Prehal, Christian; Jiang, Huili; Liu, Yang; Feng, Guang; Presser, Volker
    Electrochemical seawater desalination has drawn significant attention as an energy-efficient technique to address the global issue of water remediation. Microporous carbons, that is, carbons with pore sizes smaller than 2 nm, are commonly used for capacitive deionization. However, micropores are ineffective for capacitive deionization at high molar strength because of their inability to permselectively uptake ions. In our work, we combine experimental work with molecular dynamics simulation and reveal the ability of sub-nanometer pores (ultramicropores) to effectively desalinate aqueous media at seawater-like molar strength. This is done without any ion-exchange membrane. The desalination capacity in 600 mM reaches 12 mg/g, with a charge efficiency of 94% and high cycling stability over 200 cycles (97% of charge efficiency retention). Using molecular dynamic simulations and providing experimental data, our work makes it possible both to understand and to calculate desalination capacity and charge efficiency at high molar strength as a function of pore size.
  • Item
    Dye-Loaded Mechanochromic and pH-Responsive Elastomeric Opal Films
    (Weinheim : Wiley-VCH, 2021) Winter, Tamara; Boehm, Anna; Presser, Volker; Gallei, Markus
    In this work, the preparation and fabrication of elastomeric opal films revealing reversible mechanochromic and pH-responsive features are reported. The core–interlayer–shell (CIS) particles are synthesized via stepwise emulsion polymerization leading to hard core (polystyrene), crosslinked interlayer (poly(methyl methacrylate-co-allyl methacrylate), and soft poly(ethyl acrylate-co-butyl acrylate-co-(2-hydroxyethyl) methacrylate) shell particles featuring a size of 294.9 ± 14.8 nm. This particle architecture enables the application of the melt-shear organization technique leading to elastomeric opal films with orange, respectively, green brilliant reflection colors dependent on the angle of view. Moreover, the hydroxyl moieties as part of the particle shell are advantageously used for subsequent thermally induced crosslinking reactions enabling the preparation of reversibly tunable mechanochromic structural colors based on Bragg's law of diffraction. Additionally, the CIS particles can be loaded upon extrusion or chemically by a postfunctionalization strategy with organic dyes implying pH-responsive features. This convenient protocol for preparing multi-responsive, reversibly stretch-tunable opal films is expected to enable a new material family for anti-counterfeiting applications based on external triggers.
  • Item
    Design of high-performance antimony/MXene hybrid electrodes for sodium-ion batteries
    (London [u.a.] : RSC, 2022) Arnold, Stefanie; Gentile, Antonio; Li, Yunjie; Wang, Qingsong; Marchionna, Stefano; Ruffo, Riccardo; Presser, Volker
    Due to their versatile properties and excellent electrical conductivity, MXenes have become attractive materials for alkali metal-ion batteries. However, as the capacity is limited to lower values due to the intercalation mechanism, these materials can hardly keep up in the ever-fast-growing community of battery research. Antimony has a promisingly high theoretical sodiation capacity characterized by an alloying reaction. The main drawback of this type of battery material is related to the high volume changes during cycling, often leading to electrode cracking and pulverization, resulting in poor electrochemical performance. A synergistic effect of combing antimony and MXene can be expected to obtain an optimized electrochemical system to overcome capacity fading of antimony while taking advantage of MXene charge storage ability. In this work, variation of the synthesis parameters and material design strategy have been dedicated to achieving the optimized antimony/MXene hybrid electrodes for high-performance sodium-ion batteries. The optimized performance does not align with the highest amount of antimony, the smallest nanoparticles, or the largest interlayer distance of MXene but with the most homogeneous distribution of antimony and MXene while both components remain electrochemically addressable. As a result, the electrode with 40 mass% MXene, not previously expanded, etched with 5 mass% HF and 60% antimony synthesized on the surfaces of MXene emerged as the best electrode. We obtained a high reversible capacity of 450 mA h g−1 at 0.1 A g−1 with a capacity retention of around 96% after 100 cycles with this hybrid material. Besides the successful cycling stability, this material also exhibits high rate capability with a capacity of 365 mA h g−1 at 4 A g−1. In situ XRD measurements and post mortem analysis were used to investigate the reaction mechanism.
  • Item
    Nanoporous Block Copolymer Membranes with Enhanced Solvent Resistance Via UV-Mediated Cross-Linking Strategies
    (Weinheim : Wiley-VCH, 2021) Frieß, Florian V.; Hu, Qiwei; Mayer, Jannik; Gemmer, Lea; Presser, Volker; Balzer, Bizan N.; Gallei, Markus
    In this work, a block copolymer (BCP) consisting of poly((butyl methacrylate-co-benzophenone methacrylate-co-methyl methacrylate)-block-(2-hydroxyethyl methacrylate)) (P(BMA-co-BPMA-co-MMA)-b-P(HEMA)) is prepared by a two-step atom-transfer radical polymerization (ATRP) procedure. BCP membranes are fabricated applying the self-assembly and nonsolvent induced phase separation (SNIPS) process from a ternary solvent mixture of tetrahydrofuran (THF), 1,4-dioxane, and dimethylformamide (DMF). The presence of a porous top layer of the integral asymmetric membrane featuring pores of about 30 nm is confirmed via scanning electron microscopy (SEM). UV-mediated cross-linking protocols for the nanoporous membrane are adjusted to maintain the open and isoporous top layer. The swelling capability of the noncross-linked and cross-linked BCP membranes is investigated in water, water/ethanol mixture (1:1), and pure ethanol using atomic force microscopy, proving a stabilizing effect of the UV cross-linking on the porous structures. Finally, the influence of the herein described cross-linking protocols on water-flux measurements for the obtained membranes is explored. As a result, an increased swelling resistance for all tested solvents is found, leading to an increased water flux compared to the pristine membrane. The herein established UV-mediated cross-linking protocol is expected to pave the way to a new generation of porous and stabilized membranes within the fields of separation technologies.
  • Item
    Rings and Chains: Synthesis and Characterization of Polyferrocenylmethylene
    (Weinheim : Wiley-VCH, 2021) Winter, Tamara; Haider, Wasim; Schießer, Alexander; Presser, Volker; Gallei, Markus; Schäfer, André
    The synthesis and characterization of polyferrocenylmethylene (PFM) starting from dilithium 2,2-bis(cyclopentadienide)propane and a Me2C[1]magnesocenophane is reported. Molecular weights of up to Mw = 11 700 g mol–1 featuring a dispersity, Ð, of 1.40 can be achieved. The material is studied by different methods comprising nuclear magnetic resonance (NMR) spectroscopy, matrix-assisted laser desorption/ionization time of flight (MALDI-ToF) mass spectrometry, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) measurements elucidating the molecular structure and thermal properties of these novel polymers. Moreover, cyclic voltammetry (CV) reveals quasi-reversible oxidation and reduction behavior and communication between the iron centers. Also, the crystal structure of a related cyclic hexamer is presented