Search Results

Now showing 1 - 10 of 15
  • Item
    In situ measurements with CPC micro-actuators using SEM
    (Bellingham : SPIE, 2014) Kaasik, Friedrich; Must, Indrek; Lust, Enn; Jürgens, Meelis; Presser, Volker; Punning, Andres; Temmer, Rauno; Kiefer, Rudolf; Aabloo, Alvo
    Comparative measurements of carbon-polymer composite micro-actuators based on room temperature ionic liquid electrolyte were carried out in situ (1) in vacuum using a state-of-the-art scanning electron microscope, (2) in an oxygen-free atmosphere under ambient pressure, and (3) under ambient environment. The fabricated micro-actuators sustained their actuation performance in all three environments, revealing important implications regarding their humidity-dependence. SEM observations demonstrate high stroke actuation of a device with submillimeter length, which is the typical size range of actuators desirable for medical or lab-on-chip applications.
  • Item
    New insights into the structure of nanoporous carbons from NMR, Raman, and pair distribution function analysis
    (Washington D.C. : American Chemical Society, 2015) Forse, Alexander C.; Merlet, Céline; Allan, Phoebe K.; Humphreys, Elizabeth K.; Griffin, John M.; Aslan, Mesut; Zeiger, Marco; Presser, Volker; Gogotsi, Yury; Grey, Clare P.
    The structural characterization of nanoporous carbons is a challenging task as they generally lack long-range order and can exhibit diverse local structures. Such characterization represents an important step toward understanding and improving the properties and functionality of porous carbons, yet few experimental techniques have been developed for this purpose. Here we demonstrate the application of nuclear magnetic resonance (NMR) spectroscopy and pair distribution function (PDF) analysis as new tools to probe the local structures of porous carbons, alongside more conventional Raman spectroscopy. Together, the PDFs and the Raman spectra allow the local chemical bonding to be probed, with the bonding becoming more ordered for carbide-derived carbons (CDCs) synthesized at higher temperatures. The ring currents induced in the NMR experiment (and thus the observed NMR chemical shifts for adsorbed species) are strongly dependent on the size of the aromatic carbon domains. We exploit this property and use computer simulations to show that the carbon domain size increases with the temperature used in the carbon synthesis. The techniques developed here are applicable to a wide range of porous carbons and offer new insights into the structures of CDCs (conventional and vacuum-annealed) and coconut shell-derived activated carbons.
  • Item
    Electrocatalytic fuel cell desalination for continuous energy and freshwater generation
    (Maryland Heights, MO : Cell Press, 2021) Zhang, Yuan; Wang, Lei; Presser, Volker
    Advanced hydrogen technologies contribute essentially to the decarbonization of our industrialized world. Large-scale hydrogen production would benefit from using the abundantly available water reservoir of our planet’s oceans. Current seawater-desalination technologies suffer from high energy consumption, high cost, or low performance. Here, we report technology for water desalination at seawater molarity, based on a polymer ion-exchange membrane fuel cell. By continuously supplying hydrogen and oxygen to the cell, a 160-mM concentration decrease from an initial value of 600 mM is accomplished within 40 h for a 55-mL reservoir. This device’s desalination rate in 600 mM NaCl and substitute ocean water are 18 g/m2/h and 16 g/m2/h, respectively. In addition, by removing 1 g of NaCl, 67 mWh of electric energy is generated. This proof-of-concept work shows the high application potential for sustainable fuel-cell desalination (FCD) using hydrogen as an energy carrier.
  • Item
    Ionophobicity of carbon sub-nanometer pores enables efficient desalination at high salinity
    (Maryland Heights, MO : Cell Press, 2022) Zhang, Yuan; Prehal, Christian; Jiang, Huili; Liu, Yang; Feng, Guang; Presser, Volker
    Electrochemical seawater desalination has drawn significant attention as an energy-efficient technique to address the global issue of water remediation. Microporous carbons, that is, carbons with pore sizes smaller than 2 nm, are commonly used for capacitive deionization. However, micropores are ineffective for capacitive deionization at high molar strength because of their inability to permselectively uptake ions. In our work, we combine experimental work with molecular dynamics simulation and reveal the ability of sub-nanometer pores (ultramicropores) to effectively desalinate aqueous media at seawater-like molar strength. This is done without any ion-exchange membrane. The desalination capacity in 600 mM reaches 12 mg/g, with a charge efficiency of 94% and high cycling stability over 200 cycles (97% of charge efficiency retention). Using molecular dynamic simulations and providing experimental data, our work makes it possible both to understand and to calculate desalination capacity and charge efficiency at high molar strength as a function of pore size.
  • Item
    Best practice for electrochemical water desalination data generation and analysis
    (Maryland Heights, MO : Cell Press, 2023) Torkamanzadeh, Mohammad; Kök, Cansu; Burger, Peter Rolf; Ren, Panyu; Zhang, Yuan; Lee, Juhan; Kim, Choonsoo; Presser, Volker
    Electrochemical desalination shows promise for ion-selective, energy-efficient water desalination. This work reviews performance metrics commonly used for electrochemical desalination. We provide a step-by-step guide on acquiring, processing, and calculating raw desalination data, emphasizing informative and reliable figures of merit. A typical experiment uses calibrated conductivity probes to relate measured conductivity to concentration. Using a standard electrochemical desalination cell with activated carbon electrodes, we demonstrate the calculation of desalination capacity, charge efficiency, energy consumption, and ion selectivity metrics. We address potential pitfalls in performance metric calculations, including leakage current (charge) considerations and aging of conductivity probes, which can lead to inaccurate results. The relationships between pH, temperature, and conductivity are explored, highlighting their influence on final concentrations. Finally, we provide a checklist for calculating performance metrics and planning electrochemical desalination tests to ensure accuracy and reliability. Additionally, we offer simplified spreadsheet tools to aid data processing, system design, estimations, and upscaling.
  • Item
    Design of high-performance antimony/MXene hybrid electrodes for sodium-ion batteries
    (London [u.a.] : RSC, 2022) Arnold, Stefanie; Gentile, Antonio; Li, Yunjie; Wang, Qingsong; Marchionna, Stefano; Ruffo, Riccardo; Presser, Volker
    Due to their versatile properties and excellent electrical conductivity, MXenes have become attractive materials for alkali metal-ion batteries. However, as the capacity is limited to lower values due to the intercalation mechanism, these materials can hardly keep up in the ever-fast-growing community of battery research. Antimony has a promisingly high theoretical sodiation capacity characterized by an alloying reaction. The main drawback of this type of battery material is related to the high volume changes during cycling, often leading to electrode cracking and pulverization, resulting in poor electrochemical performance. A synergistic effect of combing antimony and MXene can be expected to obtain an optimized electrochemical system to overcome capacity fading of antimony while taking advantage of MXene charge storage ability. In this work, variation of the synthesis parameters and material design strategy have been dedicated to achieving the optimized antimony/MXene hybrid electrodes for high-performance sodium-ion batteries. The optimized performance does not align with the highest amount of antimony, the smallest nanoparticles, or the largest interlayer distance of MXene but with the most homogeneous distribution of antimony and MXene while both components remain electrochemically addressable. As a result, the electrode with 40 mass% MXene, not previously expanded, etched with 5 mass% HF and 60% antimony synthesized on the surfaces of MXene emerged as the best electrode. We obtained a high reversible capacity of 450 mA h g−1 at 0.1 A g−1 with a capacity retention of around 96% after 100 cycles with this hybrid material. Besides the successful cycling stability, this material also exhibits high rate capability with a capacity of 365 mA h g−1 at 4 A g−1. In situ XRD measurements and post mortem analysis were used to investigate the reaction mechanism.
  • Item
    Niobium carbide nanofibers as a versatile precursor for high power supercapacitor and high energy battery electrodes
    (London [u.a.] : RSC, 2016) Tolosa, Aura; Krüner, Benjamin; Fleischmann, Simon; Jäckel, Nicolas; Zeiger, Marco; Aslan, Mesut; Grobelsek, Ingrid; Presser, Volker
    This study presents electrospun niobium carbide/carbon (NbC/C) hybrid nanofibers, with an average diameter of 69 ± 30 nm, as a facile precursor to derive either highly nanoporous niobium carbide-derived carbon (NbC–CDC) fibers for supercapacitor applications or niobium pentoxide/carbon (Nb2O5/C) hybrid fibers for battery-like energy storage. In all cases, the electrodes consist of binder-free and free-standing nanofiber mats that can be used without further conductive additives. Chlorine gas treatment conformally transforms NbC nanofiber mats into NbC–CDC fibers with a specific surface area of 1508 m2 g−1. These nanofibers show a maximum specific energy of 19.5 W h kg−1 at low power and 7.6 W h kg−1 at a high specific power of 30 kW kg−1 in an organic electrolyte. CO2 treatment transforms NbC into T-Nb2O5/C hybrid nanofiber mats that provide a maximum capacity of 156 mA h g−1. The presence of graphitic carbon in the hybrid nanofibers enabled high power handling, maintaining 50% of the initial energy storage capacity at a high rate of 10 A g−1 (64 C-rate). When benchmarked for an asymmetric full-cell, a maximum specific energy of 86 W h kg−1 was obtained. The high specific power for both systems, NbC–CDC and T-Nb2O5/C, resulted from the excellent charge propagation in the continuous nanofiber network and the high graphitization of the carbon structure.
  • Item
    Choosing the right carbon additive is of vital importance for high-performance Sb-based Na-ion batteries
    (London [u.a.] : RSC, 2020) Pfeifer, Kristina; Arnold, Stefanie; Budak, Öznil; Luo, Xianlin; Presser, Volker; Ehrenberg, Helmut; Dsoke, Sonia
    Electrodes based on alloying reactions for sodium-ion batteries (NIB) offer high specific capacity but require bespoken electrode material design to enable high performance stability. This work addresses that issue by systematically exploring the impact of carbon properties on antimony/carbon composite electrodes for NIBs. Since the Sb surface is covered by an insulating oxide layer, carbon additives are crucial for the percolation and electrochemical activity of Sb based anodes. Instead of using complex hybridization strategies, the ability of mechanical mixing to yield stable high-performance Sb/C sodium-ion battery (NIB) electrodes is shown. This is only possible by considering the physical, chemical, and structural features of the carbon phase. A comparison of carbon nanohorns, onion-like carbon, carbon black, and graphite as conductive additives is given in this work. The best performance is not triggered by the highest or lowest surface area, and not by highest or lowest heteroatom content, but by the best ability to homogenously distribute within the Sb matrix. The latter provides an optimum interaction between carbon and Sb and is best enabled by onion-like carbon. A remarkable rate performance is attained, electrode cracking caused by volume expansion is successfully prevented, and the homogeneity of the solid/electrolyte interphase is significantly improved as a result of it. With this composite electrode, a reversible capacity of 490 mA h g-1 at 0.1 A g-1 and even 300 mA g-1 at 8 A g-1 is obtained. Additionally, high stability with a capacity retention of 73% over 100 cycles is achieved at charge/discharge rates of 0.2 A g-1 This journal is © The Royal Society of Chemistry.
  • Item
    Vanadium pentoxide/carbide-derived carbon core-shell hybrid particles for high performance electrochemical energy storage
    (London [u.a.] : RSC, 2016) Zeiger, Marco; Ariyanto, Teguh; Krüner, Benjamin; Peter, Nicolas J.; Fleischmann, Simon; Etzold, Bastian J.M.; Presser, Volker
    A novel, two step synthesis is presented combining the formation of carbide-derived carbon (CDC) and redox-active vanadium pentoxide (V2O5) in a core–shell manner using solely vanadium carbide (VC) as the precursor. In a first step, the outer part of VC particles is transformed to nanoporous CDC owing to the in situ formation of chlorine gas from NiCl2 at 700 °C. In a second step, the remaining VC core is calcined in synthetic air to obtain V2O5/CDC core–shell particles. Materials characterization by means of electron microscopy, Raman spectroscopy, and X-ray diffraction clearly demonstrates the partial transformation from VC to CDC, as well as the successive oxidation to V2O5/CDC core–shell particles. Electrochemical performance was tested in organic 1 M LiClO4 in acetonitrile using half- and asymmetric full-cell configuration. High specific capacities of 420 mA h g−1 (normalized to V2O5) and 310 mA h g−1 (normalized to V2O5/CDC) were achieved. The unique nanotextured core–shell architecture enables high power retention with ultrafast charging and discharging, achieving more than 100 mA h g−1 at 5 A g−1 (rate of 12C). Asymmetric cell design with CDC on the positive polarization side leads to a high specific energy of up to 80 W h kg−1 with a superior retention of more than 80% over 10 000 cycles and an overall energy efficiency of up to 80% at low rates.
  • Item
    MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization
    (London [u.a.] : RSC, 2016) Srimuk, Pattarachai; Kaasik, Friedrich; Krüner, Benjamin; Tolosa, Aura; Fleischmann, Simon; Jäckel, Nicolas; Tekeli, Mehmet C.; Aslan, Mesut; Suss, Matthew E.; Presser, Volker
    In this proof-of-concept study, we introduce and demonstrate MXene as a novel type of intercalation electrode for desalination via capacitive deionization (CDI). Traditional CDI cells employ nanoporous carbon electrodes with significant pore volume to achieve a large desalination capacity via ion electrosorption. By contrast, MXene stores charge by ion intercalation between the sheets of its two-dimensional nanolamellar structure. By this virtue, it behaves as an ideal pseudocapacitor, that is, showing capacitive electric response while intercalating both anions and cations. We synthesized Ti3C2-MXene by the conventional process of etching ternary titanium aluminum carbide i.e., the MAX phase (Ti3AlC2) with hydrofluoric acid. The MXene material was cast directly onto the porous separator of the CDI cell without added binder, and exhibited very stable performance over 30 CDI cycles with an average salt adsorption capacity of 13 ± 2 mg g−1.