Search Results

Now showing 1 - 2 of 2
  • Item
    Enhanced electrochemical energy storage by nanoscopic decoration of endohedral and exohedral carbon with vanadium oxide via atomic layer deposition
    (Washington D.C. : American Chemical Society, 2016) Fleischmann, Simon; Jäckel, Nicolas; Zeiger, Marco; Krüner, Benjamin; Grobelsek, Ingrid; Formanek, Petr; Choudhury, Soumyadip; Weingarth, Daniel; Presser, Volker
    Atomic layer deposition (ALD) is a facile process to decorate carbon surfaces with redox-active nanolayers. This is a particularly attractive route to obtain hybrid electrode materials for high performance electrochemical energy storage applications. Using activated carbon and carbon onions as representatives of substrate materials with large internal or external surface area, respectively, we have studied the enhanced energy storage capacity of vanadium oxide coatings. While the internal porosity of activated carbon readily becomes blocked by obstructing nanopores, carbon onions enable the continued deposition of vanadia within their large interparticle voids. Electrochemical benchmarking in lithium perchlorate in acetonitrile (1 M LiClO4) showed a maximum capacity of 122 mAh/g when using vanadia coated activated carbon and 129 mAh/g for vanadia coated carbon onions. There is an optimum amount of vanadia between 50 and 65 wt % for both substrates that results in an ideal balance between redox-activity and electrical conductivity of the hybrid electrode. Assembling asymmetric (charge balanced) full-cells, a maximum specific energy of 38 Wh/kg and 29 Wh/kg was found for carbon onions and activated carbon, respectively. The stability of both systems is promising, with a capacity retention of ∼85–91% after 7000 cycles for full-cell measurements.
  • Item
    Ring current effects: Factors affecting the NMR chemical shift of molecules adsorbed on porous carbons
    (Washington D.C. : American Chemical Society, 2014) Forse, Alexander C.; Griffin, John M.; Presser, Volker; Gogotsi, Yury; Grey, Clare P.
    Nuclear magnetic resonance (NMR) spectroscopy is increasingly being used to study the adsorption of molecules in porous carbons, a process which underpins applications ranging from electrochemical energy storage to water purification. Here we present density functional theory (DFT) calculations of the nucleus-independent chemical shift (NICS) near various sp2-hybridized carbon fragments to explore the structural factors that may affect the resonance frequencies observed for adsorbed species. The domain size of the delocalized electron system affects the calculated NICSs, with larger domains giving rise to larger chemical shieldings. In slit pores, overlap of the ring current effects from the pore walls is shown to increase the chemical shielding. Finally, curvature in the carbon sheets is shown to have a significant effect on the NICS. The trends observed are consistent with existing NMR results as well as new spectra presented for an electrolyte adsorbed on carbide-derived carbons prepared at different temperatures.