Search Results

Now showing 1 - 9 of 9
  • Item
    Layered Nano‐Mosaic of Niobium Disulfide Heterostructures by Direct Sulfidation of Niobium Carbide MXenes for Hydrogen Evolution
    (Weinheim : Wiley-VCH, 2022) Husmann, Samantha; Torkamanzadeh, Mohammad; Liang, Kun; Majed, Ahmad; Dun, Chaochao; Urban, Jeffrey J.; Naguib, Michael; Presser, Volker
    MXene-transition metal dichalcogenide (TMD) heterostructures are synthesized through a one-step heat treatment of Nb2C and Nb4C3. These MXenes are used without delamination or any pre-treatment. Heat treatments accomplish the sacrificial transformation of these MXenes into TMD (NbS2) at 700 and 900 °C under H2S. This work investigates, for the first time, the role of starting MXene phase in the derivative morphology. It is shown that while treatment of Nb2C at 700 °C leads to the formation of pillar-like structures on the parent MXene, Nb4C3 produces nano-mosaic layered NbS2. At 900 °C, both MXene phases, of the same transition metal, fully convert into nano-mosaic layered NbS2 preserving the parent MXene's layered morphology. When tested as electrodes for hydrogen evolution reaction, Nb4C3-derived hybrids show better performance than Nb2C derivatives. The Nb4C3-derived heterostructure exhibits a low overpotential of 198 mV at 10 mA cm−2 and a Tafel slope of 122 mV dec−1, with good cycling stability in an acidic electrolyte.
  • Item
    High-Entropy Energy Materials in the Age of Big Data: A Critical Guide to Next-Generation Synthesis and Applications
    (Weinheim : Wiley-VCH, 2021) Wang, Qingsong; Velasco, Leonardo; Breitung, Ben; Presser, Volker
    High-entropy materials (HEMs) with promising energy storage and conversion properties have recently attracted worldwide increasing research interest. Nevertheless, most research on the synthesis of HEMs focuses on a “trial and error” method without any guidance, which is very laborious and time-consuming. This review aims to provide an instructive approach to searching and developing new high-entropy energy materials in a much more efficient way. Toward materials design for future technologies, a fundamental understanding of the process/structure/property/performance linkage on an atomistic level will promote prescreening and selection of material candidates. With the help of computational material science, in which the fast development of computational capabilities that have a rapidly growing impact on new materials design, this fundamental understanding can be approached. Furthermore, high-throughput experimental methods, enabled by the advances in instrumentation and electronics, will accelerate the production of large quantities of results and stimulate the identification of the target products, adding knowledge in computational design. This review shows that combining computational preselection and verification by high-throughput can be an efficient approach to unveil the complexities of HEMs and design novel HEMs with enhanced properties for energy-related applications.
  • Item
    Three-Dimensional Cobalt Hydroxide Hollow Cube/Vertical Nanosheets with High Desalination Capacity and Long-Term Performance Stability in Capacitive Deionization
    ([Beijing] : China Association for Science and Technology, 2021) Xiong, Yuecheng; Yu, Fei; Arnold, Stefanie; Wang, Lei; Presser, Volker; Ren, Yifan; Ma, Jie
    Faradaic electrode materials have significantly improved the performance of membrane capacitive deionization, which offers an opportunity to produce freshwater from seawater or brackish water in an energy-efficient way. However, Faradaic materials hold the drawbacks of slow desalination rate due to the intrinsic low ion diffusion kinetics and inferior stability arising from the volume expansion during ion intercalation, impeding the engineering application of capacitive deionization. Herein, a pseudocapacitive material with hollow architecture was prepared via template-etching method, namely, cuboid cobalt hydroxide, with fast desalination rate (3.3 mg (NaCl)·g-1 (h-Co(OH)2)·min-1 at 100 mA·g-1) and outstanding stability (90% capacity retention after 100 cycles). The hollow structure enables swift ion transport inside the material and keeps the electrode intact by alleviating the stress induced from volume expansion during the ion capture process, which is corroborated well by in situ electrochemical dilatometry and finite element simulation. Additionally, benefiting from the elimination of unreacted bulk material and vertical cobalt hydroxide nanosheets on the exterior surface, the synthesized material provides a high desalination capacity ( mg (NaCl)·g-1 (h-Co(OH)2) at 30 mA·g-1). This work provides a new strategy, constructing microscale hollow faradic configuration, to further boost the desalination performance of Faradaic materials.
  • Item
    P2-type layered high-entropy oxides as sodium-ion cathode materials
    (Bristol : IOP Science, 2022) Wang, Junbo; Dreyer, Sören L; Wang, Kai; Ding, Ziming; Diemant, Thomas; Karkera, Guruprakash; Ma, Yanjiao; Sarkar, Abhishek; Zhou, Bei; Gorbunov, Mikhail V; Omar, Ahmad; Mikhailova, Daria; Presser, Volker; Fichtner, Maximilian; Hahn, Horst; Brezesinski, Torsten; Breitung, Ben; Wang, Qingsong
    P2-type layered oxides with the general Na-deficient composition NaxTMO2 (x < 1, TM: transition metal) are a promising class of cathode materials for sodium-ion batteries. The open Na+ transport pathways present in the structure lead to low diffusion barriers and enable high charge/discharge rates. However, a phase transition from P2 to O2 structure occurring above 4.2 V and metal dissolution at low potentials upon discharge results in rapid capacity degradation. In this work, we demonstrate the positive effect of configurational entropy on the stability of the crystal structure during battery operation. Three different compositions of layered P2-type oxides were synthesized by solid-state chemistry, Na0.67(Mn0.55Ni0.21Co0.24)O2, Na0.67(Mn0.45Ni0.18Co0.24Ti0.1Mg0.03)O2 and Na0.67(Mn0.45Ni0.18Co0.18Ti0.1Mg0.03Al0.04Fe0.02)O2 with low, medium and high configurational entropy, respectively. The high-entropy cathode material shows lower structural transformation and Mn dissolution upon cycling in a wide voltage range from 1.5 to 4.6 V. Advanced operando techniques and post-mortem analysis were used to probe the underlying reaction mechanism thoroughly. Overall, the high-entropy strategy is a promising route for improving the electrochemical performance of P2 layered oxide cathodes for advanced sodium-ion battery applications.
  • Item
    Graphene Acid for Lithium‐Ion Batteries—Carboxylation Boosts Storage Capacity in Graphene
    (Weinheim : Wiley-VCH, 2021) Obraztsov, Ievgen; Bakandritsos, Aristides; Šedajová, Veronika; Langer, Rostislav; Jakubec, Petr; Zoppellaro, Giorgio; Pykal, Martin; Presser, Volker; Otyepka, Michal; Zbořil, Radek
    Environmentally sustainable, low-cost, flexible, and lightweight energy storage technologies require advancement in materials design in order to obtain more efficient organic metal-ion batteries. Synthetically tailored organic molecules, which react reversibly with lithium, may address the need for cost-effective and eco-friendly anodes used for organic/lithium battery technologies. Among them, carboxylic group-bearing molecules act as high-energy content anodes. Although organic molecules offer rich chemistry, allowing a high content of carboxyl groups to be installed on aromatic rings, they suffer from low conductivity and leakage to the electrolytes, which restricts their actual capacity, the charging/discharging rate, and eventually their application potential. Here, a densely carboxylated but conducting graphene derivative (graphene acid (GA)) is designed to circumvent these critical limitations, enabling effective operation without compromising the mechanical or chemical stability of the electrode. Experiments including operando Raman measurements and theoretical calculations reveal the excellent charge transport, redox activity, and lithium intercalation properties of the GA anode at the single-layer level, outperforming all reported organic anodes, including commercial monolayer graphene and graphene nanoplatelets. The practical capacity and rate capability of 800 mAh g−1 at 0.05 A g−1 and 174 mAh g−1 at 2.0 A g−1 demonstrate the true potential of GA anodes in advanced lithium-ion batteries.
  • Item
    Unraveling the Electrochemical Mechanism in Tin Oxide/MXene Nanocomposites as Highly Reversible Negative Electrodes for Lithium-Ion Batteries
    (Weinheim : Wiley-VCH, 2023) Gentile, Antonio; Arnold, Stefanie; Ferrara, Chiara; Marchionna, Stefano; Tang, Yushu; Maibach, Julia; Kübel, Christian; Presser, Volker; Ruffo, Riccardo
    Lithium-ion batteries are constantly developing as the demands for power and energy storage increase. One promising approach to designing high-performance lithium-ion batteries is using conversion/alloying materials, such as SnO2. This class of materials does, in fact, present excellent performance and ease of preparation; however, it suffers from mechanical instabilities during cycling that impair its use. One way to overcome these problems is to prepare composites with bi-dimensional materials that stabilize them. Thus, over the past 10 years, two-dimensional materials with excellent transport properties (graphene, MXenes) have been developed that can be used synergistically with conversion materials to exploit both advantages. In this work, a 50/50 (by mass) SnO2/Ti3C2Tz nanocomposite is prepared and optimized as a negative electrode for lithium-ion batteries. The nanocomposite delivers over 500 mAh g−1 for 700 cycles at 0.1 A g−1 and demonstrates excellent rate capability, with 340 mAh g−1 at 8 A g−1. These results are due to the synergistic behavior of the two components of the nanocomposite, as demonstrated by ex situ chemical, structural, and morphological analyses. This knowledge allows, for the first time, to formulate a reaction mechanism with lithium-ions that provides partial reversibility of the conversion reaction with the formation of SnO.
  • Item
    The Many Deaths of Supercapacitors: Degradation, Aging, and Performance Fading
    (Weinheim : Wiley-VCH, 2023) Pameté, Emmanuel; Köps, Lukas; Kreth, Fabian Alexander; Pohlmann, Sebastian; Varzi, Alberto; Brousse, Thierry; Balducci, Andrea; Presser, Volker
    High-performance electrochemical applications have expedited the research in high-power devices. As such, supercapacitors, including electrical double-layer capacitors (EDLCs) and pseudocapacitors, have gained significant attention due to their high power density, long cycle life, and fast charging capabilities. Yet, no device lasts forever. It is essential to understand the mechanisms behind performance degradation and aging so that these bottlenecks can be addressed and tailored solutions can be developed. Herein, the factors contributing to the aging and degradation of supercapacitors, including electrode materials, electrolytes, and other aspects of the system, such as pore blocking, electrode compositions, functional groups, and corrosion of current collectors are examined. The monitoring and characterizing of the performance degradation of supercapacitors, including electrochemical methods, in situ, and ex situ techniques are explored. In addition, the degradation mechanisms of different types of electrolytes and electrode materials and the effects of aging from an industrial application standpoint are analyzed. Next, how electrode degradations and electrolyte decompositions can lead to failure, and pore blocking, electrode composition, and other factors that affect the device's lifespan are examined. Finally, the future directions and challenges for reducing supercapacitors' performance degradation, including developing new materials and methods for characterizing and monitoring the devices are summarized.
  • Item
    Influence of structural depth of laser-patterned steel surfaces on the solid lubricity of carbon nanoparticle coatings
    (Berlin ; Heidelberg : Springer, 2022) Maclucas, Timothy; Daut, Lukas; Grützmacher, Philipp; Guitar, Maria Agustina; Presser, Volker; Gachot, Carsten; Suarez, Sebastian; Mücklich, Frank
    Carbon nanoparticle coatings on laser-patterned stainless-steel surfaces present a solid lubrication system where the pattern’s recessions act as lubricant-retaining reservoirs. This study investigates the influence of the structural depth of line patterns coated with multi-walled carbon nanotubes (CNTs) and carbon onions (COs) on their respective potential to reduce friction and wear. Direct laser interference patterning (DLIP) with a pulse duration of 12 ps is used to create line patterns with three different structural depths at a periodicity of 3.5 µm on AISI 304 steel platelets. Subsequently, electrophoretic deposition (EPD) is applied to form homogeneous carbon nanoparticle coatings on the patterned platelets. Tribological ball-on-disc experiments are conducted on the as-described surfaces with an alumina counter body at a load of 100 mN. The results show that the shallower the coated structure, the lower its coefficient of friction (COF), regardless of the particle type. Thereby, with a minimum of just below 0.20, CNTs reach lower COF values than COs over most of the testing period. The resulting wear tracks are characterized by scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. During friction testing, the CNTs remain in contact, and the immediate proximity, whereas the CO coating is largely removed. Regardless of structural depth, no oxidation occurs on CNT-coated surfaces, whereas minor oxidation is detected on CO-coated wear tracks. [Figure not available: see fulltext.].
  • Item
    Functional two-dimensional high-entropy materials
    (London : Springer Nature, 2023) Nemani, Srinivasa Kartik; Torkamanzadeh, Mohammad; Wyatt, Brian C.; Presser, Volker; Anasori, Babak
    Multiple principal element or high-entropy materials have recently been studied in the two-dimensional (2D) materials phase space. These promising classes of materials combine the unique behavior of solid-solution and entropy-stabilized systems with high aspect ratios and atomically thin characteristics of 2D materials. The current experimental space of these materials includes 2D transition metal oxides, carbides/carbonitrides/nitrides (MXenes), dichalcogenides, and hydrotalcites. However, high-entropy 2D materials have the potential to expand into other types, such as 2D metal-organic frameworks, 2D transition metal carbo-chalcogenides, and 2D transition metal borides (MBenes). Here, we discuss the entropy stabilization from bulk to 2D systems, the effects of disordered multi-valent elements on lattice distortion and local electronic structures and elucidate how these local changes influence the catalytic and electrochemical behavior of these 2D high-entropy materials. We also provide a perspective on 2D high-entropy materials research and its challenges and discuss the importance of this emerging field of nanomaterials in designing tunable compositions with unique electronic structures for energy, catalytic, electronic, and structural applications.