Search Results

Now showing 1 - 2 of 2
  • Item
    Time‐Dependent Cation Selectivity of Titanium Carbide MXene in Aqueous Solution
    (Weinheim : Wiley-VCH, 2022) Wang, Lei; Torkamanzadeh, Mohammad; Majed, Ahmad; Zhang, Yuan; Wang, Qingsong; Breitung, Ben; Feng, Guang; Naguib, Michael; Presser, Volker
    Electrochemical ion separation is a promising technology to recover valuable ionic species from water. Pseudocapacitive materials, especially 2D materials, are up-and-coming electrodes for electrochemical ion separation. For implementation, it is essential to understand the interplay of the intrinsic preference of a specific ion (by charge/size), kinetic ion preference (by mobility), and crystal structure changes. Ti3C2Tz MXene is chosen here to investigate its selective behavior toward alkali and alkaline earth cations. Utilizing an online inductively coupled plasma system, it is found that Ti3C2Tz shows a time-dependent selectivity feature. In the early stage of charging (up to about 50 min), K+ is preferred, while ultimately Ca2+ and Mg2+ uptake dominate; this unique phenomenon is related to dehydration energy barriers and the ion exchange effect between divalent and monovalent cations. Given the wide variety of MXenes, this work opens the door to a new avenue where selective ion-separation with MXene can be further engineered and optimized.
  • Item
    Best practice for electrochemical water desalination data generation and analysis
    (Maryland Heights, MO : Cell Press, 2023) Torkamanzadeh, Mohammad; Kök, Cansu; Burger, Peter Rolf; Ren, Panyu; Zhang, Yuan; Lee, Juhan; Kim, Choonsoo; Presser, Volker
    Electrochemical desalination shows promise for ion-selective, energy-efficient water desalination. This work reviews performance metrics commonly used for electrochemical desalination. We provide a step-by-step guide on acquiring, processing, and calculating raw desalination data, emphasizing informative and reliable figures of merit. A typical experiment uses calibrated conductivity probes to relate measured conductivity to concentration. Using a standard electrochemical desalination cell with activated carbon electrodes, we demonstrate the calculation of desalination capacity, charge efficiency, energy consumption, and ion selectivity metrics. We address potential pitfalls in performance metric calculations, including leakage current (charge) considerations and aging of conductivity probes, which can lead to inaccurate results. The relationships between pH, temperature, and conductivity are explored, highlighting their influence on final concentrations. Finally, we provide a checklist for calculating performance metrics and planning electrochemical desalination tests to ensure accuracy and reliability. Additionally, we offer simplified spreadsheet tools to aid data processing, system design, estimations, and upscaling.